| L(s) = 1 | + (−0.918 − 1.07i)2-s − 1.19·3-s + (−0.313 + 1.97i)4-s + (2.22 − 0.234i)5-s + (1.09 + 1.28i)6-s + (−2.11 + 1.58i)7-s + (2.41 − 1.47i)8-s − 1.58·9-s + (−2.29 − 2.17i)10-s − 3.65·11-s + (0.373 − 2.35i)12-s + 5.56i·13-s + (3.65 + 0.822i)14-s + (−2.64 + 0.279i)15-s + (−3.80 − 1.23i)16-s + 0.808·17-s + ⋯ |
| L(s) = 1 | + (−0.649 − 0.760i)2-s − 0.687·3-s + (−0.156 + 0.987i)4-s + (0.994 − 0.105i)5-s + (0.446 + 0.522i)6-s + (−0.800 + 0.599i)7-s + (0.852 − 0.521i)8-s − 0.527·9-s + (−0.725 − 0.688i)10-s − 1.10·11-s + (0.107 − 0.678i)12-s + 1.54i·13-s + (0.975 + 0.219i)14-s + (−0.683 + 0.0722i)15-s + (−0.950 − 0.309i)16-s + 0.196·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.270 - 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.270 - 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.373479 + 0.283054i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.373479 + 0.283054i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.918 + 1.07i)T \) |
| 5 | \( 1 + (-2.22 + 0.234i)T \) |
| 7 | \( 1 + (2.11 - 1.58i)T \) |
| good | 3 | \( 1 + 1.19T + 3T^{2} \) |
| 11 | \( 1 + 3.65T + 11T^{2} \) |
| 13 | \( 1 - 5.56iT - 13T^{2} \) |
| 17 | \( 1 - 0.808T + 17T^{2} \) |
| 19 | \( 1 - 4.54iT - 19T^{2} \) |
| 23 | \( 1 - 1.75T + 23T^{2} \) |
| 29 | \( 1 - 8.36iT - 29T^{2} \) |
| 31 | \( 1 + 4.73T + 31T^{2} \) |
| 37 | \( 1 + 6.15T + 37T^{2} \) |
| 41 | \( 1 + 7.65iT - 41T^{2} \) |
| 43 | \( 1 - 2.66iT - 43T^{2} \) |
| 47 | \( 1 - 4.79iT - 47T^{2} \) |
| 53 | \( 1 + 2.98T + 53T^{2} \) |
| 59 | \( 1 - 8.92iT - 59T^{2} \) |
| 61 | \( 1 - 4.08T + 61T^{2} \) |
| 67 | \( 1 + 11.7iT - 67T^{2} \) |
| 71 | \( 1 + 8.17iT - 71T^{2} \) |
| 73 | \( 1 + 15.1T + 73T^{2} \) |
| 79 | \( 1 + 2.49iT - 79T^{2} \) |
| 83 | \( 1 - 5.75T + 83T^{2} \) |
| 89 | \( 1 - 4.95iT - 89T^{2} \) |
| 97 | \( 1 - 11.7T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.09336476678506118374260366929, −10.92883287579702236825714369475, −10.28937655422185420060381886333, −9.258214029446342925536882648416, −8.697311869190927898467502967069, −7.13360926147933164848473220215, −6.04341805073640506033174484018, −5.03369603558841438016221143563, −3.20180678719793615573798593134, −1.92450556472681959441494390945,
0.45256969043558577848573247443, 2.78487683493534377628811868507, 5.11223758708300842961236513997, 5.72272749487224354902590291119, 6.62952236997293920796169767397, 7.67417482986994518551211694803, 8.798288552272701486504778560446, 9.992198284322751612229693438721, 10.38327073563453384684820983495, 11.25835898651014441054613630906