L(s) = 1 | + (1.20 + 0.741i)2-s − 2.57·3-s + (0.901 + 1.78i)4-s + (0.460 + 2.18i)5-s + (−3.10 − 1.91i)6-s + (−2.31 − 1.28i)7-s + (−0.236 + 2.81i)8-s + 3.65·9-s + (−1.06 + 2.97i)10-s − 3.59·11-s + (−2.32 − 4.60i)12-s + 1.33i·13-s + (−1.83 − 3.25i)14-s + (−1.18 − 5.64i)15-s + (−2.37 + 3.21i)16-s − 2.88·17-s + ⋯ |
L(s) = 1 | + (0.851 + 0.523i)2-s − 1.48·3-s + (0.450 + 0.892i)4-s + (0.205 + 0.978i)5-s + (−1.26 − 0.780i)6-s + (−0.874 − 0.484i)7-s + (−0.0837 + 0.996i)8-s + 1.21·9-s + (−0.337 + 0.941i)10-s − 1.08·11-s + (−0.671 − 1.32i)12-s + 0.370i·13-s + (−0.491 − 0.870i)14-s + (−0.306 − 1.45i)15-s + (−0.593 + 0.804i)16-s − 0.699·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.927 - 0.372i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.927 - 0.372i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.166004 + 0.858445i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.166004 + 0.858445i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.20 - 0.741i)T \) |
| 5 | \( 1 + (-0.460 - 2.18i)T \) |
| 7 | \( 1 + (2.31 + 1.28i)T \) |
good | 3 | \( 1 + 2.57T + 3T^{2} \) |
| 11 | \( 1 + 3.59T + 11T^{2} \) |
| 13 | \( 1 - 1.33iT - 13T^{2} \) |
| 17 | \( 1 + 2.88T + 17T^{2} \) |
| 19 | \( 1 - 5.38iT - 19T^{2} \) |
| 23 | \( 1 - 4.45T + 23T^{2} \) |
| 29 | \( 1 + 1.88iT - 29T^{2} \) |
| 31 | \( 1 - 7.70T + 31T^{2} \) |
| 37 | \( 1 - 4.64T + 37T^{2} \) |
| 41 | \( 1 + 0.606iT - 41T^{2} \) |
| 43 | \( 1 - 12.1iT - 43T^{2} \) |
| 47 | \( 1 + 6.92iT - 47T^{2} \) |
| 53 | \( 1 - 6.31T + 53T^{2} \) |
| 59 | \( 1 - 1.39iT - 59T^{2} \) |
| 61 | \( 1 + 3.80T + 61T^{2} \) |
| 67 | \( 1 + 13.6iT - 67T^{2} \) |
| 71 | \( 1 - 8.19iT - 71T^{2} \) |
| 73 | \( 1 - 11.4T + 73T^{2} \) |
| 79 | \( 1 - 10.3iT - 79T^{2} \) |
| 83 | \( 1 + 13.5T + 83T^{2} \) |
| 89 | \( 1 - 7.04iT - 89T^{2} \) |
| 97 | \( 1 + 6.26T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.32627529871787140680465542315, −11.34674477306012331657927458940, −10.70930754474287949123636431219, −9.848311149584203356218301322558, −7.930000709815191216846895669725, −6.83060956570469596651204912905, −6.33533687085803411115283656676, −5.44337256480995517596539096763, −4.23156302273776771520025633694, −2.81407155620971436255397767096,
0.57807835353583206995095207600, 2.68464761609195032684606924218, 4.56356398572921258921518879788, 5.26708773758917956356316620289, 6.01289289752950644857060629072, 6.99458475050507248105246336578, 8.853929456826821892637215120102, 9.943200322516702461568529609903, 10.75877764534613469046888978497, 11.60748886265620936960813765962