L(s) = 1 | + (−0.244 − 1.39i)2-s − 2.91·3-s + (−1.88 + 0.682i)4-s + (−1.83 − 1.27i)5-s + (0.712 + 4.05i)6-s + (−1.52 − 2.16i)7-s + (1.41 + 2.45i)8-s + 5.47·9-s + (−1.32 + 2.87i)10-s − 0.0929·11-s + (5.47 − 1.98i)12-s + 4.08i·13-s + (−2.64 + 2.65i)14-s + (5.34 + 3.71i)15-s + (3.06 − 2.56i)16-s + 4.24·17-s + ⋯ |
L(s) = 1 | + (−0.173 − 0.984i)2-s − 1.68·3-s + (−0.940 + 0.341i)4-s + (−0.821 − 0.570i)5-s + (0.290 + 1.65i)6-s + (−0.575 − 0.817i)7-s + (0.498 + 0.866i)8-s + 1.82·9-s + (−0.419 + 0.907i)10-s − 0.0280·11-s + (1.57 − 0.573i)12-s + 1.13i·13-s + (−0.705 + 0.708i)14-s + (1.38 + 0.958i)15-s + (0.767 − 0.641i)16-s + 1.02·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.863 - 0.504i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.863 - 0.504i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.211527 + 0.0572053i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.211527 + 0.0572053i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.244 + 1.39i)T \) |
| 5 | \( 1 + (1.83 + 1.27i)T \) |
| 7 | \( 1 + (1.52 + 2.16i)T \) |
good | 3 | \( 1 + 2.91T + 3T^{2} \) |
| 11 | \( 1 + 0.0929T + 11T^{2} \) |
| 13 | \( 1 - 4.08iT - 13T^{2} \) |
| 17 | \( 1 - 4.24T + 17T^{2} \) |
| 19 | \( 1 - 2.39iT - 19T^{2} \) |
| 23 | \( 1 + 4.52T + 23T^{2} \) |
| 29 | \( 1 + 4.35iT - 29T^{2} \) |
| 31 | \( 1 + 1.10T + 31T^{2} \) |
| 37 | \( 1 + 8.54T + 37T^{2} \) |
| 41 | \( 1 - 6.10iT - 41T^{2} \) |
| 43 | \( 1 - 4.60iT - 43T^{2} \) |
| 47 | \( 1 - 7.93iT - 47T^{2} \) |
| 53 | \( 1 - 14.3T + 53T^{2} \) |
| 59 | \( 1 + 10.6iT - 59T^{2} \) |
| 61 | \( 1 + 1.92T + 61T^{2} \) |
| 67 | \( 1 - 13.1iT - 67T^{2} \) |
| 71 | \( 1 - 9.75iT - 71T^{2} \) |
| 73 | \( 1 + 6.19T + 73T^{2} \) |
| 79 | \( 1 - 3.42iT - 79T^{2} \) |
| 83 | \( 1 - 11.7T + 83T^{2} \) |
| 89 | \( 1 - 4.46iT - 89T^{2} \) |
| 97 | \( 1 + 10.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.88608446982726706755097189878, −11.20055501490118015459139883744, −10.26274825223881537841967950208, −9.571021527014235649430742535921, −8.096670972755696304387770298707, −7.01899763866964080393837797777, −5.70244812736885082329691634336, −4.51985119397586927955414445096, −3.79355739518682831272467570798, −1.17820231855151035510197697521,
0.26231585147456051685581806016, 3.62812284106588593630653517678, 5.17261866260460790795207138318, 5.75843164359202269428433262091, 6.74686036767882908308082819338, 7.54303987325615735146443215618, 8.756644250327616168774719198697, 10.20102582402981477476787608754, 10.61310146650574375480037492359, 12.09566566492904618323810728518