L(s) = 1 | + (−0.510 − 1.31i)2-s − 0.857·3-s + (−1.47 + 1.34i)4-s + (1.33 − 1.79i)5-s + (0.437 + 1.13i)6-s + (2.41 − 1.08i)7-s + (2.53 + 1.26i)8-s − 2.26·9-s + (−3.04 − 0.837i)10-s + 3.05·11-s + (1.26 − 1.15i)12-s − 3.18i·13-s + (−2.66 − 2.62i)14-s + (−1.14 + 1.54i)15-s + (0.375 − 3.98i)16-s − 7.44·17-s + ⋯ |
L(s) = 1 | + (−0.360 − 0.932i)2-s − 0.495·3-s + (−0.739 + 0.673i)4-s + (0.594 − 0.803i)5-s + (0.178 + 0.461i)6-s + (0.911 − 0.411i)7-s + (0.894 + 0.446i)8-s − 0.754·9-s + (−0.964 − 0.264i)10-s + 0.921·11-s + (0.366 − 0.333i)12-s − 0.883i·13-s + (−0.712 − 0.701i)14-s + (−0.294 + 0.398i)15-s + (0.0939 − 0.995i)16-s − 1.80·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.625 + 0.780i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.625 + 0.780i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.394424 - 0.821968i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.394424 - 0.821968i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.510 + 1.31i)T \) |
| 5 | \( 1 + (-1.33 + 1.79i)T \) |
| 7 | \( 1 + (-2.41 + 1.08i)T \) |
good | 3 | \( 1 + 0.857T + 3T^{2} \) |
| 11 | \( 1 - 3.05T + 11T^{2} \) |
| 13 | \( 1 + 3.18iT - 13T^{2} \) |
| 17 | \( 1 + 7.44T + 17T^{2} \) |
| 19 | \( 1 + 4.61iT - 19T^{2} \) |
| 23 | \( 1 + 0.708T + 23T^{2} \) |
| 29 | \( 1 + 2.41iT - 29T^{2} \) |
| 31 | \( 1 - 5.14T + 31T^{2} \) |
| 37 | \( 1 - 2.07T + 37T^{2} \) |
| 41 | \( 1 - 5.51iT - 41T^{2} \) |
| 43 | \( 1 - 4.21iT - 43T^{2} \) |
| 47 | \( 1 - 6.55iT - 47T^{2} \) |
| 53 | \( 1 - 3.75T + 53T^{2} \) |
| 59 | \( 1 + 3.11iT - 59T^{2} \) |
| 61 | \( 1 - 9.55T + 61T^{2} \) |
| 67 | \( 1 - 0.519iT - 67T^{2} \) |
| 71 | \( 1 + 10.9iT - 71T^{2} \) |
| 73 | \( 1 + 2.32T + 73T^{2} \) |
| 79 | \( 1 - 9.98iT - 79T^{2} \) |
| 83 | \( 1 - 8.73T + 83T^{2} \) |
| 89 | \( 1 - 18.5iT - 89T^{2} \) |
| 97 | \( 1 - 1.58T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35067346359369095755765836441, −10.87671900624231113464449155443, −9.649867224076180242722867731705, −8.781038463804163092991501037656, −8.086191324203077525146345992811, −6.46504358687603524637971999220, −5.07464163339199673285596832666, −4.32841146839333664807832206053, −2.44385756642237012762563632876, −0.881164176102085840636712753169,
1.96396817628101013465675500779, 4.23136252743182005901467380833, 5.48023155342704078911679260061, 6.33091469324152275078754409586, 7.04016233347557251509874493900, 8.492199697263856759466931294703, 9.075789147888159115092942157313, 10.29075262550831212037151010186, 11.19204959439665731018217136109, 11.89946387336871772777836693481