| L(s) = 1 | + (13.6 + 7.89i)3-s + (−24.9 + 14.3i)5-s + (39.2 − 29.2i)7-s + (84.0 + 145. i)9-s + (6.39 − 11.0i)11-s − 283. i·13-s − 453.·15-s + (−164. − 94.7i)17-s + (−139. + 80.7i)19-s + (768. − 90.5i)21-s + (−86.2 − 149. i)23-s + (101. − 175. i)25-s + 1.37e3i·27-s + 711.·29-s + (−747. − 431. i)31-s + ⋯ |
| L(s) = 1 | + (1.51 + 0.876i)3-s + (−0.996 + 0.575i)5-s + (0.801 − 0.597i)7-s + (1.03 + 1.79i)9-s + (0.0528 − 0.0915i)11-s − 1.67i·13-s − 2.01·15-s + (−0.567 − 0.327i)17-s + (−0.387 + 0.223i)19-s + (1.74 − 0.205i)21-s + (−0.163 − 0.282i)23-s + (0.161 − 0.280i)25-s + 1.88i·27-s + 0.845·29-s + (−0.777 − 0.449i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.719 - 0.694i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.719 - 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{5}{2})\) |
\(\approx\) |
\(1.74191 + 0.703516i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.74191 + 0.703516i\) |
| \(L(3)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (-39.2 + 29.2i)T \) |
| good | 3 | \( 1 + (-13.6 - 7.89i)T + (40.5 + 70.1i)T^{2} \) |
| 5 | \( 1 + (24.9 - 14.3i)T + (312.5 - 541. i)T^{2} \) |
| 11 | \( 1 + (-6.39 + 11.0i)T + (-7.32e3 - 1.26e4i)T^{2} \) |
| 13 | \( 1 + 283. iT - 2.85e4T^{2} \) |
| 17 | \( 1 + (164. + 94.7i)T + (4.17e4 + 7.23e4i)T^{2} \) |
| 19 | \( 1 + (139. - 80.7i)T + (6.51e4 - 1.12e5i)T^{2} \) |
| 23 | \( 1 + (86.2 + 149. i)T + (-1.39e5 + 2.42e5i)T^{2} \) |
| 29 | \( 1 - 711.T + 7.07e5T^{2} \) |
| 31 | \( 1 + (747. + 431. i)T + (4.61e5 + 7.99e5i)T^{2} \) |
| 37 | \( 1 + (-411. - 712. i)T + (-9.37e5 + 1.62e6i)T^{2} \) |
| 41 | \( 1 - 2.85e3iT - 2.82e6T^{2} \) |
| 43 | \( 1 - 1.32e3T + 3.41e6T^{2} \) |
| 47 | \( 1 + (2.99e3 - 1.73e3i)T + (2.43e6 - 4.22e6i)T^{2} \) |
| 53 | \( 1 + (102. - 177. i)T + (-3.94e6 - 6.83e6i)T^{2} \) |
| 59 | \( 1 + (-3.35e3 - 1.93e3i)T + (6.05e6 + 1.04e7i)T^{2} \) |
| 61 | \( 1 + (-1.78e3 + 1.03e3i)T + (6.92e6 - 1.19e7i)T^{2} \) |
| 67 | \( 1 + (63.1 - 109. i)T + (-1.00e7 - 1.74e7i)T^{2} \) |
| 71 | \( 1 + 7.59e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (4.44e3 + 2.56e3i)T + (1.41e7 + 2.45e7i)T^{2} \) |
| 79 | \( 1 + (-1.35e3 - 2.35e3i)T + (-1.94e7 + 3.37e7i)T^{2} \) |
| 83 | \( 1 + 7.84e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 + (5.59e3 - 3.23e3i)T + (3.13e7 - 5.43e7i)T^{2} \) |
| 97 | \( 1 + 189. iT - 8.85e7T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.13520341202990485291149170472, −15.09302003866162268489333647191, −14.58114211842843390371958185250, −13.22974559396061072357000603312, −11.15087537092366326977182015337, −10.10970535187527452147180841108, −8.374618511738670666522175852297, −7.63567424134319868402458843479, −4.41755758246452247969757970302, −3.07518507245500106957165677613,
1.95514984682086819476000089530, 4.16155882251799136389917218763, 7.08170355473327736673074111044, 8.371032269516250187399827606768, 9.008165381506086708610855388915, 11.61200782448187607653869573108, 12.60606461597066123825823799542, 13.96991305263443536991798424432, 14.85719029982085357157326037802, 16.00424460128009152907733081594