| L(s) = 1 | − 10.5i·2-s + 10.1i·3-s − 78.6·4-s + 106.·6-s − 228. i·7-s + 490. i·8-s + 140.·9-s + 121·11-s − 798. i·12-s + 640. i·13-s − 2.39e3·14-s + 2.64e3·16-s + 2.08e3i·17-s − 1.47e3i·18-s + 2.33e3·19-s + ⋯ |
| L(s) = 1 | − 1.85i·2-s + 0.651i·3-s − 2.45·4-s + 1.21·6-s − 1.75i·7-s + 2.70i·8-s + 0.576·9-s + 0.301·11-s − 1.59i·12-s + 1.05i·13-s − 3.27·14-s + 2.58·16-s + 1.74i·17-s − 1.07i·18-s + 1.48·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(1.881617866\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.881617866\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 - 121T \) |
| good | 2 | \( 1 + 10.5iT - 32T^{2} \) |
| 3 | \( 1 - 10.1iT - 243T^{2} \) |
| 7 | \( 1 + 228. iT - 1.68e4T^{2} \) |
| 13 | \( 1 - 640. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 2.08e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 2.33e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 570. iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 178.T + 2.05e7T^{2} \) |
| 31 | \( 1 - 6.49e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 406. iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 1.52e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 2.52e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 2.05e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 2.26e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 5.65e3T + 7.14e8T^{2} \) |
| 61 | \( 1 - 6.71e3T + 8.44e8T^{2} \) |
| 67 | \( 1 + 9.19e3iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 1.87e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 1.30e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 1.00e5T + 3.07e9T^{2} \) |
| 83 | \( 1 - 2.10e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 2.75e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 9.05e4iT - 8.58e9T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62987829600254942637125897795, −10.08254411155209498327949565209, −9.458979776740635578588017634861, −8.213108293106262310930836963619, −6.84647771076003726429742348050, −4.87062059127641591211196277534, −3.99436367647046081032120707974, −3.58382820903257235450721548377, −1.72267244196284062309727157595, −0.842264891715174175222154475171,
0.831636359775579765073359536972, 2.89053605389714983146751361161, 4.83179066444660044070442051207, 5.55935734601446557410438921035, 6.43368639257421176384314891738, 7.43790622856893121934645978715, 8.079252334247758997318587698192, 9.175805643635557321438862077823, 9.727986812946658863577776453470, 11.76889007164311348214512086367