Properties

Label 24-275e12-1.1-c5e12-0-0
Degree $24$
Conductor $1.871\times 10^{29}$
Sign $1$
Analytic cond. $5.41899\times 10^{19}$
Root an. cond. $6.64120$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 77·4-s + 626·9-s + 1.45e3·11-s + 4.46e3·16-s − 1.22e3·19-s − 2.19e4·29-s + 1.77e4·31-s + 4.82e4·36-s + 320·41-s + 1.11e5·44-s + 5.23e4·49-s − 2.41e5·59-s − 1.84e4·61-s + 1.61e5·64-s + 3.27e5·71-s − 9.39e4·76-s + 7.34e4·79-s + 1.95e5·81-s − 5.09e5·89-s + 9.08e5·99-s − 2.15e5·101-s + 4.11e5·109-s − 1.68e6·116-s + 1.14e6·121-s + 1.36e6·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 2.40·4-s + 2.57·9-s + 3.61·11-s + 4.35·16-s − 0.775·19-s − 4.84·29-s + 3.31·31-s + 6.19·36-s + 0.0297·41-s + 8.70·44-s + 3.11·49-s − 9.01·59-s − 0.635·61-s + 4.93·64-s + 7.71·71-s − 1.86·76-s + 1.32·79-s + 3.31·81-s − 6.82·89-s + 9.32·99-s − 2.09·101-s + 3.31·109-s − 11.6·116-s + 7.09·121-s + 7.97·124-s + 5.50e−6·127-s + 5.09e−6·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{24} \cdot 11^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{24} \cdot 11^{12}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(5^{24} \cdot 11^{12}\)
Sign: $1$
Analytic conductor: \(5.41899\times 10^{19}\)
Root analytic conductor: \(6.64120\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 5^{24} \cdot 11^{12} ,\ ( \ : [5/2]^{12} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(32.40152215\)
\(L(\frac12)\) \(\approx\) \(32.40152215\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( ( 1 - p^{2} T )^{12} \)
good2 \( 1 - 77 T^{2} + 1467 T^{4} + 68965 T^{6} - 735693 p^{2} T^{8} - 1769085 p^{4} T^{10} + 59246297 p^{6} T^{12} - 1769085 p^{14} T^{14} - 735693 p^{22} T^{16} + 68965 p^{30} T^{18} + 1467 p^{40} T^{20} - 77 p^{50} T^{22} + p^{60} T^{24} \)
3 \( 1 - 626 T^{2} + 195943 T^{4} - 2742370 p^{2} T^{6} + 71354459 p^{4} T^{8} - 4596790220 p^{6} T^{10} + 21464665546 p^{10} T^{12} - 4596790220 p^{16} T^{14} + 71354459 p^{24} T^{16} - 2742370 p^{32} T^{18} + 195943 p^{40} T^{20} - 626 p^{50} T^{22} + p^{60} T^{24} \)
7 \( 1 - 52330 T^{2} + 2304428159 T^{4} - 62787078790250 T^{6} + 1575432931160812155 T^{8} - \)\(42\!\cdots\!00\)\( p T^{10} + \)\(56\!\cdots\!70\)\( T^{12} - \)\(42\!\cdots\!00\)\( p^{11} T^{14} + 1575432931160812155 p^{20} T^{16} - 62787078790250 p^{30} T^{18} + 2304428159 p^{40} T^{20} - 52330 p^{50} T^{22} + p^{60} T^{24} \)
13 \( 1 - 2502004 T^{2} + 247919930842 p T^{4} - 2788904116613606340 T^{6} + \)\(18\!\cdots\!27\)\( T^{8} - \)\(91\!\cdots\!60\)\( T^{10} + \)\(37\!\cdots\!52\)\( T^{12} - \)\(91\!\cdots\!60\)\( p^{10} T^{14} + \)\(18\!\cdots\!27\)\( p^{20} T^{16} - 2788904116613606340 p^{30} T^{18} + 247919930842 p^{41} T^{20} - 2502004 p^{50} T^{22} + p^{60} T^{24} \)
17 \( 1 - 3106170 T^{2} + 7609381403807 T^{4} - 17726097284463026170 T^{6} + \)\(33\!\cdots\!43\)\( T^{8} - \)\(56\!\cdots\!40\)\( T^{10} + \)\(86\!\cdots\!98\)\( T^{12} - \)\(56\!\cdots\!40\)\( p^{10} T^{14} + \)\(33\!\cdots\!43\)\( p^{20} T^{16} - 17726097284463026170 p^{30} T^{18} + 7609381403807 p^{40} T^{20} - 3106170 p^{50} T^{22} + p^{60} T^{24} \)
19 \( ( 1 + 610 T + 3190579 T^{2} + 6190567550 T^{3} + 12814117289875 T^{4} + 16505267615365300 T^{5} + 41329816265517558290 T^{6} + 16505267615365300 p^{5} T^{7} + 12814117289875 p^{10} T^{8} + 6190567550 p^{15} T^{9} + 3190579 p^{20} T^{10} + 610 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
23 \( 1 - 42001356 T^{2} + 796007446589378 T^{4} - \)\(88\!\cdots\!20\)\( T^{6} + \)\(61\!\cdots\!79\)\( T^{8} - \)\(30\!\cdots\!60\)\( T^{10} + \)\(14\!\cdots\!84\)\( T^{12} - \)\(30\!\cdots\!60\)\( p^{10} T^{14} + \)\(61\!\cdots\!79\)\( p^{20} T^{16} - \)\(88\!\cdots\!20\)\( p^{30} T^{18} + 796007446589378 p^{40} T^{20} - 42001356 p^{50} T^{22} + p^{60} T^{24} \)
29 \( ( 1 + 10964 T + 122520281 T^{2} + 815259092220 T^{3} + 5431302911221787 T^{4} + 26728592086363454720 T^{5} + \)\(13\!\cdots\!62\)\( T^{6} + 26728592086363454720 p^{5} T^{7} + 5431302911221787 p^{10} T^{8} + 815259092220 p^{15} T^{9} + 122520281 p^{20} T^{10} + 10964 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
31 \( ( 1 - 8868 T + 23486765 T^{2} + 174911358708 T^{3} - 765101731238653 T^{4} - 7337521350847229736 T^{5} + \)\(76\!\cdots\!66\)\( T^{6} - 7337521350847229736 p^{5} T^{7} - 765101731238653 p^{10} T^{8} + 174911358708 p^{15} T^{9} + 23486765 p^{20} T^{10} - 8868 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
37 \( 1 - 340568146 T^{2} + 60103698765473431 T^{4} - \)\(69\!\cdots\!10\)\( T^{6} + \)\(58\!\cdots\!47\)\( T^{8} - \)\(41\!\cdots\!40\)\( T^{10} + \)\(27\!\cdots\!42\)\( T^{12} - \)\(41\!\cdots\!40\)\( p^{10} T^{14} + \)\(58\!\cdots\!47\)\( p^{20} T^{16} - \)\(69\!\cdots\!10\)\( p^{30} T^{18} + 60103698765473431 p^{40} T^{20} - 340568146 p^{50} T^{22} + p^{60} T^{24} \)
41 \( ( 1 - 160 T + 462530202 T^{2} - 777925073248 T^{3} + 2599242825336423 p T^{4} - \)\(18\!\cdots\!08\)\( T^{5} + \)\(15\!\cdots\!40\)\( T^{6} - \)\(18\!\cdots\!08\)\( p^{5} T^{7} + 2599242825336423 p^{11} T^{8} - 777925073248 p^{15} T^{9} + 462530202 p^{20} T^{10} - 160 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
43 \( 1 - 1132814260 T^{2} + 560368076182513394 T^{4} - \)\(15\!\cdots\!00\)\( T^{6} + \)\(26\!\cdots\!15\)\( T^{8} - \)\(28\!\cdots\!00\)\( T^{10} + \)\(29\!\cdots\!80\)\( T^{12} - \)\(28\!\cdots\!00\)\( p^{10} T^{14} + \)\(26\!\cdots\!15\)\( p^{20} T^{16} - \)\(15\!\cdots\!00\)\( p^{30} T^{18} + 560368076182513394 p^{40} T^{20} - 1132814260 p^{50} T^{22} + p^{60} T^{24} \)
47 \( 1 - 26382836 p T^{2} + 760499985411312290 T^{4} - \)\(31\!\cdots\!60\)\( T^{6} + \)\(10\!\cdots\!71\)\( T^{8} - \)\(27\!\cdots\!60\)\( T^{10} + \)\(66\!\cdots\!76\)\( T^{12} - \)\(27\!\cdots\!60\)\( p^{10} T^{14} + \)\(10\!\cdots\!71\)\( p^{20} T^{16} - \)\(31\!\cdots\!60\)\( p^{30} T^{18} + 760499985411312290 p^{40} T^{20} - 26382836 p^{51} T^{22} + p^{60} T^{24} \)
53 \( 1 - 3045659586 T^{2} + 84156867637537675 p T^{4} - \)\(42\!\cdots\!90\)\( T^{6} + \)\(29\!\cdots\!51\)\( T^{8} - \)\(16\!\cdots\!00\)\( T^{10} + \)\(74\!\cdots\!46\)\( T^{12} - \)\(16\!\cdots\!00\)\( p^{10} T^{14} + \)\(29\!\cdots\!51\)\( p^{20} T^{16} - \)\(42\!\cdots\!90\)\( p^{30} T^{18} + 84156867637537675 p^{41} T^{20} - 3045659586 p^{50} T^{22} + p^{60} T^{24} \)
59 \( ( 1 + 120532 T + 9412440198 T^{2} + 8753288078820 p T^{3} + 22598394277814176839 T^{4} + \)\(79\!\cdots\!00\)\( T^{5} + \)\(23\!\cdots\!24\)\( T^{6} + \)\(79\!\cdots\!00\)\( p^{5} T^{7} + 22598394277814176839 p^{10} T^{8} + 8753288078820 p^{16} T^{9} + 9412440198 p^{20} T^{10} + 120532 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
61 \( ( 1 + 9228 T + 3228518633 T^{2} + 2450917415284 T^{3} + 4521434490158831931 T^{4} - \)\(24\!\cdots\!44\)\( T^{5} + \)\(42\!\cdots\!34\)\( T^{6} - \)\(24\!\cdots\!44\)\( p^{5} T^{7} + 4521434490158831931 p^{10} T^{8} + 2450917415284 p^{15} T^{9} + 3228518633 p^{20} T^{10} + 9228 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
67 \( 1 - 7922414052 T^{2} + 31435558402452067602 T^{4} - \)\(86\!\cdots\!80\)\( T^{6} + \)\(18\!\cdots\!83\)\( T^{8} - \)\(33\!\cdots\!00\)\( T^{10} + \)\(49\!\cdots\!28\)\( T^{12} - \)\(33\!\cdots\!00\)\( p^{10} T^{14} + \)\(18\!\cdots\!83\)\( p^{20} T^{16} - \)\(86\!\cdots\!80\)\( p^{30} T^{18} + 31435558402452067602 p^{40} T^{20} - 7922414052 p^{50} T^{22} + p^{60} T^{24} \)
71 \( ( 1 - 163948 T + 20114910917 T^{2} - 1708534305484068 T^{3} + \)\(11\!\cdots\!63\)\( T^{4} - \)\(65\!\cdots\!48\)\( T^{5} + \)\(30\!\cdots\!66\)\( T^{6} - \)\(65\!\cdots\!48\)\( p^{5} T^{7} + \)\(11\!\cdots\!63\)\( p^{10} T^{8} - 1708534305484068 p^{15} T^{9} + 20114910917 p^{20} T^{10} - 163948 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
73 \( 1 - 16115400964 T^{2} + \)\(12\!\cdots\!66\)\( T^{4} - \)\(61\!\cdots\!00\)\( T^{6} + \)\(21\!\cdots\!07\)\( T^{8} - \)\(60\!\cdots\!80\)\( T^{10} + \)\(13\!\cdots\!52\)\( T^{12} - \)\(60\!\cdots\!80\)\( p^{10} T^{14} + \)\(21\!\cdots\!07\)\( p^{20} T^{16} - \)\(61\!\cdots\!00\)\( p^{30} T^{18} + \)\(12\!\cdots\!66\)\( p^{40} T^{20} - 16115400964 p^{50} T^{22} + p^{60} T^{24} \)
79 \( ( 1 - 36712 T + 8265852230 T^{2} - 510532153825080 T^{3} + 43291427241491002111 T^{4} - \)\(23\!\cdots\!00\)\( T^{5} + \)\(17\!\cdots\!16\)\( T^{6} - \)\(23\!\cdots\!00\)\( p^{5} T^{7} + 43291427241491002111 p^{10} T^{8} - 510532153825080 p^{15} T^{9} + 8265852230 p^{20} T^{10} - 36712 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
83 \( 1 - 35266245740 T^{2} + \)\(56\!\cdots\!54\)\( T^{4} - \)\(55\!\cdots\!00\)\( T^{6} + \)\(37\!\cdots\!75\)\( T^{8} - \)\(19\!\cdots\!00\)\( T^{10} + \)\(84\!\cdots\!40\)\( T^{12} - \)\(19\!\cdots\!00\)\( p^{10} T^{14} + \)\(37\!\cdots\!75\)\( p^{20} T^{16} - \)\(55\!\cdots\!00\)\( p^{30} T^{18} + \)\(56\!\cdots\!54\)\( p^{40} T^{20} - 35266245740 p^{50} T^{22} + p^{60} T^{24} \)
89 \( ( 1 + 254946 T + 50054578375 T^{2} + 7054717254835170 T^{3} + \)\(81\!\cdots\!91\)\( T^{4} + \)\(78\!\cdots\!60\)\( T^{5} + \)\(63\!\cdots\!66\)\( T^{6} + \)\(78\!\cdots\!60\)\( p^{5} T^{7} + \)\(81\!\cdots\!91\)\( p^{10} T^{8} + 7054717254835170 p^{15} T^{9} + 50054578375 p^{20} T^{10} + 254946 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
97 \( 1 - 88248569836 T^{2} + \)\(36\!\cdots\!26\)\( T^{4} - \)\(94\!\cdots\!00\)\( T^{6} + \)\(17\!\cdots\!07\)\( T^{8} - \)\(22\!\cdots\!20\)\( T^{10} + \)\(22\!\cdots\!32\)\( T^{12} - \)\(22\!\cdots\!20\)\( p^{10} T^{14} + \)\(17\!\cdots\!07\)\( p^{20} T^{16} - \)\(94\!\cdots\!00\)\( p^{30} T^{18} + \)\(36\!\cdots\!26\)\( p^{40} T^{20} - 88248569836 p^{50} T^{22} + p^{60} T^{24} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.00943546094049797410031210521, −2.89053605389714983146751361161, −2.82087264961347484575799900368, −2.78942061022368538595288464086, −2.78793500725743495945205102634, −2.46815197469097711727930561490, −2.29055570921911243024239671679, −2.28512277896080033442998422123, −1.96000521789776172245130001345, −1.94265943884237216499490725978, −1.84368343499484093925322914639, −1.72267244196284062309727157595, −1.70746476598355787844471233284, −1.63304860749762783284008692106, −1.47757537467042051641448605216, −1.27695965252926868231924288914, −1.27082984619456796461629455057, −1.25586940125013547231426739294, −0.842264891715174175222154475171, −0.831636359775579765073359536972, −0.812620383026499943380328858021, −0.61380483320727227938126392892, −0.47485203946386640160585549925, −0.26550490016192203829935656641, −0.079393949221094661740183431701, 0.079393949221094661740183431701, 0.26550490016192203829935656641, 0.47485203946386640160585549925, 0.61380483320727227938126392892, 0.812620383026499943380328858021, 0.831636359775579765073359536972, 0.842264891715174175222154475171, 1.25586940125013547231426739294, 1.27082984619456796461629455057, 1.27695965252926868231924288914, 1.47757537467042051641448605216, 1.63304860749762783284008692106, 1.70746476598355787844471233284, 1.72267244196284062309727157595, 1.84368343499484093925322914639, 1.94265943884237216499490725978, 1.96000521789776172245130001345, 2.28512277896080033442998422123, 2.29055570921911243024239671679, 2.46815197469097711727930561490, 2.78793500725743495945205102634, 2.78942061022368538595288464086, 2.82087264961347484575799900368, 2.89053605389714983146751361161, 3.00943546094049797410031210521

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.