L(s) = 1 | + (1.80 + 0.587i)2-s + (−3.61 + 2.62i)3-s + (−0.309 − 0.224i)4-s + (−8.09 + 2.62i)6-s + (4.89 − 6.74i)7-s + (−4.89 − 6.74i)8-s + (3.39 − 10.4i)9-s + (−10.3 − 3.66i)11-s + 1.70·12-s + (18.6 + 6.06i)13-s + (12.8 − 9.31i)14-s + (−4.42 − 13.6i)16-s + (20.4 − 6.65i)17-s + (12.2 − 16.9i)18-s + (−9.14 − 12.5i)19-s + ⋯ |
L(s) = 1 | + (0.904 + 0.293i)2-s + (−1.20 + 0.876i)3-s + (−0.0772 − 0.0561i)4-s + (−1.34 + 0.438i)6-s + (0.699 − 0.963i)7-s + (−0.612 − 0.842i)8-s + (0.377 − 1.16i)9-s + (−0.942 − 0.333i)11-s + 0.142·12-s + (1.43 + 0.466i)13-s + (0.916 − 0.665i)14-s + (−0.276 − 0.851i)16-s + (1.20 − 0.391i)17-s + (0.683 − 0.940i)18-s + (−0.481 − 0.662i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.780 + 0.625i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.780 + 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.29083 - 0.453618i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.29083 - 0.453618i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (10.3 + 3.66i)T \) |
good | 2 | \( 1 + (-1.80 - 0.587i)T + (3.23 + 2.35i)T^{2} \) |
| 3 | \( 1 + (3.61 - 2.62i)T + (2.78 - 8.55i)T^{2} \) |
| 7 | \( 1 + (-4.89 + 6.74i)T + (-15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (-18.6 - 6.06i)T + (136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (-20.4 + 6.65i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (9.14 + 12.5i)T + (-111. + 343. i)T^{2} \) |
| 23 | \( 1 - 6.50T + 529T^{2} \) |
| 29 | \( 1 + (-2.70 + 3.71i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-9.93 + 30.5i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (36.5 + 26.5i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (17.0 + 23.4i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 65.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-13.7 + 10.0i)T + (682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (25.4 - 78.3i)T + (-2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (1.25 + 0.910i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (24.0 - 7.80i)T + (3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 - 76.0T + 4.48e3T^{2} \) |
| 71 | \( 1 + (33.6 + 103. i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (69.9 - 96.3i)T + (-1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-80.1 - 26.0i)T + (5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (72.9 - 23.6i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 + 53.7T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-50.4 + 155. i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42822189978234670352076406691, −10.73825989763936047042029947285, −10.07442946065220976199258216504, −8.778350966946626281775965825307, −7.32342055625197395712658957524, −6.07199119843734315927206625843, −5.35519628965900254631252387076, −4.49438602323308996145612493370, −3.65066777362257348243694133519, −0.65012964774728400070794961290,
1.58202439756417858782572512483, 3.23324196691708604863169496072, 4.93374736497932833476606878253, 5.56540264470854136631659859956, 6.32848952734508977942745227678, 7.938657632020006901287786707758, 8.540372642556213266637057525337, 10.35061012843762278182123278825, 11.28257097650198177905711630639, 11.94817609082221956292448797822