L(s) = 1 | + (−2.48 − 1.80i)2-s + (−3.44 − 1.11i)3-s + (1.69 + 5.20i)4-s + (6.54 + 9.00i)6-s + (−0.277 − 0.854i)7-s + (1.40 − 4.30i)8-s + (3.30 + 2.40i)9-s + (10.8 + 1.67i)11-s − 19.7i·12-s + (6.88 + 5i)13-s + (−0.854 + 2.62i)14-s + (6.42 − 4.66i)16-s + (20.0 − 14.5i)17-s + (−3.88 − 11.9i)18-s + (−11.2 − 3.66i)19-s + ⋯ |
L(s) = 1 | + (−1.24 − 0.904i)2-s + (−1.14 − 0.372i)3-s + (0.422 + 1.30i)4-s + (1.09 + 1.50i)6-s + (−0.0396 − 0.122i)7-s + (0.175 − 0.538i)8-s + (0.367 + 0.267i)9-s + (0.988 + 0.152i)11-s − 1.64i·12-s + (0.529 + 0.384i)13-s + (−0.0610 + 0.187i)14-s + (0.401 − 0.291i)16-s + (1.17 − 0.854i)17-s + (−0.216 − 0.665i)18-s + (−0.593 − 0.192i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.841 + 0.539i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.841 + 0.539i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.126415 - 0.431209i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.126415 - 0.431209i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (-10.8 - 1.67i)T \) |
good | 2 | \( 1 + (2.48 + 1.80i)T + (1.23 + 3.80i)T^{2} \) |
| 3 | \( 1 + (3.44 + 1.11i)T + (7.28 + 5.29i)T^{2} \) |
| 7 | \( 1 + (0.277 + 0.854i)T + (-39.6 + 28.8i)T^{2} \) |
| 13 | \( 1 + (-6.88 - 5i)T + (52.2 + 160. i)T^{2} \) |
| 17 | \( 1 + (-20.0 + 14.5i)T + (89.3 - 274. i)T^{2} \) |
| 19 | \( 1 + (11.2 + 3.66i)T + (292. + 212. i)T^{2} \) |
| 23 | \( 1 - 7.23iT - 529T^{2} \) |
| 29 | \( 1 + (-3.29 + 1.06i)T + (680. - 494. i)T^{2} \) |
| 31 | \( 1 + (26.7 + 19.4i)T + (296. + 913. i)T^{2} \) |
| 37 | \( 1 + (38.2 - 12.4i)T + (1.10e3 - 804. i)T^{2} \) |
| 41 | \( 1 + (-1.24 - 0.403i)T + (1.35e3 + 988. i)T^{2} \) |
| 43 | \( 1 + 33.0T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-21.6 - 7.03i)T + (1.78e3 + 1.29e3i)T^{2} \) |
| 53 | \( 1 + (-46.1 + 63.5i)T + (-868. - 2.67e3i)T^{2} \) |
| 59 | \( 1 + (9.66 + 29.7i)T + (-2.81e3 + 2.04e3i)T^{2} \) |
| 61 | \( 1 + (16.5 + 22.7i)T + (-1.14e3 + 3.53e3i)T^{2} \) |
| 67 | \( 1 + 76.5iT - 4.48e3T^{2} \) |
| 71 | \( 1 + (-50.4 + 36.6i)T + (1.55e3 - 4.79e3i)T^{2} \) |
| 73 | \( 1 + (29.0 + 89.5i)T + (-4.31e3 + 3.13e3i)T^{2} \) |
| 79 | \( 1 + (38.7 - 53.3i)T + (-1.92e3 - 5.93e3i)T^{2} \) |
| 83 | \( 1 + (-45.8 + 33.3i)T + (2.12e3 - 6.55e3i)T^{2} \) |
| 89 | \( 1 - 62.2T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-42.5 + 58.5i)T + (-2.90e3 - 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.32076494273330127534624944383, −10.45498377243039056801343701016, −9.512835551165183769665640387528, −8.696895126754231966583789782445, −7.43923881475008528000531393738, −6.46213567008980992830762679758, −5.26799136427469271051420213372, −3.51545413130419865510961976275, −1.69502472930313252168522148786, −0.50070333422983255951401131889,
1.12399097901821645660144256158, 3.85734056846678067839958441656, 5.54159214554035452749700536932, 6.12879364875718991752029739842, 7.10640621467889124074994078639, 8.322822385293203408678110285044, 9.034294896760078705469966219935, 10.28224783307732222430582602640, 10.64215983216436795407183059698, 11.85235176771451313954316192748