L(s) = 1 | + (0.224 − 0.690i)2-s + (0.812 + 1.11i)3-s + (2.80 + 2.04i)4-s + (0.954 − 0.310i)6-s + (8.05 + 5.85i)7-s + (4.39 − 3.19i)8-s + (2.19 − 6.74i)9-s + (−10.3 − 3.66i)11-s + 4.79i·12-s + (−1.62 + 5i)13-s + (5.85 − 4.25i)14-s + (3.07 + 9.45i)16-s + (4.72 + 14.5i)17-s + (−4.16 − 3.02i)18-s + (−1.21 − 1.67i)19-s + ⋯ |
L(s) = 1 | + (0.112 − 0.345i)2-s + (0.270 + 0.372i)3-s + (0.702 + 0.510i)4-s + (0.159 − 0.0517i)6-s + (1.15 + 0.836i)7-s + (0.549 − 0.398i)8-s + (0.243 − 0.749i)9-s + (−0.942 − 0.333i)11-s + 0.399i·12-s + (−0.124 + 0.384i)13-s + (0.418 − 0.303i)14-s + (0.192 + 0.591i)16-s + (0.277 + 0.854i)17-s + (−0.231 − 0.168i)18-s + (−0.0641 − 0.0882i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 - 0.418i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.908 - 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.36432 + 0.517898i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.36432 + 0.517898i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (10.3 + 3.66i)T \) |
good | 2 | \( 1 + (-0.224 + 0.690i)T + (-3.23 - 2.35i)T^{2} \) |
| 3 | \( 1 + (-0.812 - 1.11i)T + (-2.78 + 8.55i)T^{2} \) |
| 7 | \( 1 + (-8.05 - 5.85i)T + (15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (1.62 - 5i)T + (-136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (-4.72 - 14.5i)T + (-233. + 169. i)T^{2} \) |
| 19 | \( 1 + (1.21 + 1.67i)T + (-111. + 343. i)T^{2} \) |
| 23 | \( 1 - 2.76iT - 529T^{2} \) |
| 29 | \( 1 + (-16.7 + 22.9i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (2.20 - 6.77i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (23.6 - 32.5i)T + (-423. - 1.30e3i)T^{2} \) |
| 41 | \( 1 + (41.2 + 56.7i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 - 23.0T + 1.84e3T^{2} \) |
| 47 | \( 1 + (16.0 + 22.0i)T + (-682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-10.8 - 3.54i)T + (2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (1.83 + 1.33i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-21.5 + 6.98i)T + (3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 + 38.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 + (-23.5 - 72.5i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (83.2 + 60.4i)T + (1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-3.74 - 1.21i)T + (5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (25.7 + 79.1i)T + (-5.57e3 + 4.04e3i)T^{2} \) |
| 89 | \( 1 + 123.T + 7.92e3T^{2} \) |
| 97 | \( 1 + (73.6 + 23.9i)T + (7.61e3 + 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.84681834211719189172212072264, −10.87034563001730698908062802261, −10.04254915089453262118490830383, −8.661178727571576289892688248392, −8.085688987336694412069257576102, −6.85338503889387481771671761401, −5.57705226517666656507125669849, −4.28149853664341474929191869975, −3.04445218662854418353511537093, −1.81971185101800917130862943663,
1.37537857797470537739428359814, 2.61231262755275315351312884370, 4.70115091849040415003413541375, 5.37067160080848482644234370338, 6.97011241318270014982171710634, 7.58769523844623639445293157273, 8.253607134556709667708000917832, 10.02075785847046222121017003476, 10.68270817819083031840314178930, 11.39239114831089404786285806569