L(s) = 1 | + (−2.61 + 2.61i)2-s + (3.50 + 3.50i)3-s − 9.71i·4-s − 18.3·6-s + (−6.89 + 6.89i)7-s + (14.9 + 14.9i)8-s + 15.5i·9-s + 3.31·11-s + (34.0 − 34.0i)12-s + (−3.74 − 3.74i)13-s − 36.1i·14-s − 39.5·16-s + (−8.33 + 8.33i)17-s + (−40.7 − 40.7i)18-s + 24.9i·19-s + ⋯ |
L(s) = 1 | + (−1.30 + 1.30i)2-s + (1.16 + 1.16i)3-s − 2.42i·4-s − 3.05·6-s + (−0.985 + 0.985i)7-s + (1.87 + 1.87i)8-s + 1.72i·9-s + 0.301·11-s + (2.83 − 2.83i)12-s + (−0.287 − 0.287i)13-s − 2.58i·14-s − 2.47·16-s + (−0.490 + 0.490i)17-s + (−2.26 − 2.26i)18-s + 1.31i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.437 + 0.899i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.437 + 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.382193 - 0.611031i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.382193 - 0.611031i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 + (2.61 - 2.61i)T - 4iT^{2} \) |
| 3 | \( 1 + (-3.50 - 3.50i)T + 9iT^{2} \) |
| 7 | \( 1 + (6.89 - 6.89i)T - 49iT^{2} \) |
| 13 | \( 1 + (3.74 + 3.74i)T + 169iT^{2} \) |
| 17 | \( 1 + (8.33 - 8.33i)T - 289iT^{2} \) |
| 19 | \( 1 - 24.9iT - 361T^{2} \) |
| 23 | \( 1 + (26.1 + 26.1i)T + 529iT^{2} \) |
| 29 | \( 1 + 31.2iT - 841T^{2} \) |
| 31 | \( 1 + 2.56T + 961T^{2} \) |
| 37 | \( 1 + (7.48 - 7.48i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 27.3T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-33.0 - 33.0i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-17.6 + 17.6i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-47.0 - 47.0i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 44.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 0.515T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-5.39 + 5.39i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 75.9T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-21.1 - 21.1i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 80.1iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (79.3 + 79.3i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 104. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (103. - 103. i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.28120540255939148696164348606, −10.53165836801973511018094150564, −9.916899789757662256884803162604, −9.314393828332085554989838404825, −8.517834068943079405243267665518, −7.953133005358737343644464458331, −6.47393796744915961671753023751, −5.62730427512055558272904024251, −4.07293101857826604512640134404, −2.39893812852872471666187449343,
0.46626734782640973831915094099, 1.82208544769718859376153350612, 2.93943133501159582678142849700, 3.84582563797675697607743269977, 6.94778615118404308402939259245, 7.24486041519932515692723192308, 8.391129984810436788160479680563, 9.224140818685330809083908541464, 9.799086954920469006281957143099, 10.95054580388710753442550718393