L(s) = 1 | + (−2.31 − 2.31i)2-s + (−0.535 + 0.535i)3-s + 6.73i·4-s + 2.48·6-s + (−2.25 − 2.25i)7-s + (6.32 − 6.32i)8-s + 8.42i·9-s + 3.31·11-s + (−3.60 − 3.60i)12-s + (7.80 − 7.80i)13-s + 10.4i·14-s − 2.37·16-s + (−6.60 − 6.60i)17-s + (19.5 − 19.5i)18-s − 14.8i·19-s + ⋯ |
L(s) = 1 | + (−1.15 − 1.15i)2-s + (−0.178 + 0.178i)3-s + 1.68i·4-s + 0.413·6-s + (−0.322 − 0.322i)7-s + (0.790 − 0.790i)8-s + 0.936i·9-s + 0.301·11-s + (−0.300 − 0.300i)12-s + (0.600 − 0.600i)13-s + 0.746i·14-s − 0.148·16-s + (−0.388 − 0.388i)17-s + (1.08 − 1.08i)18-s − 0.780i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.793 + 0.608i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.793 + 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.187888 - 0.553724i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.187888 - 0.553724i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 + (2.31 + 2.31i)T + 4iT^{2} \) |
| 3 | \( 1 + (0.535 - 0.535i)T - 9iT^{2} \) |
| 7 | \( 1 + (2.25 + 2.25i)T + 49iT^{2} \) |
| 13 | \( 1 + (-7.80 + 7.80i)T - 169iT^{2} \) |
| 17 | \( 1 + (6.60 + 6.60i)T + 289iT^{2} \) |
| 19 | \( 1 + 14.8iT - 361T^{2} \) |
| 23 | \( 1 + (-6.20 + 6.20i)T - 529iT^{2} \) |
| 29 | \( 1 + 55.3iT - 841T^{2} \) |
| 31 | \( 1 - 7.07T + 961T^{2} \) |
| 37 | \( 1 + (-22.2 - 22.2i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 36.8T + 1.68e3T^{2} \) |
| 43 | \( 1 + (50.8 - 50.8i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (45.9 + 45.9i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-5.18 + 5.18i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 94.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 102.T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-16.0 - 16.0i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 12.0T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-86.2 + 86.2i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 76.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-85.3 + 85.3i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 3.80iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (33.8 + 33.8i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28104753870397264720727924219, −10.24163081610056064993312925800, −9.736563637530718560902509034594, −8.554090068464624099226022526199, −7.86382287064453302866166384615, −6.49668634951156133110190559749, −4.87998914741756587498207057559, −3.41354654045591166848200768831, −2.15301768494693484040502746221, −0.49206001777699363159778814594,
1.30172003603646258325923180983, 3.65132152726581144212933414362, 5.50388203994454858812273790133, 6.47213679713079978864599376033, 6.98303819983371986155565730497, 8.319291829147042135514697449167, 9.008137636873306231064568134339, 9.730288341511304956766988126717, 10.83632447252608054299570496254, 11.98142922331226193874589789086