Properties

Label 2-275-5.2-c2-0-15
Degree $2$
Conductor $275$
Sign $-0.793 + 0.608i$
Analytic cond. $7.49320$
Root an. cond. $2.73737$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.31 − 2.31i)2-s + (−0.535 + 0.535i)3-s + 6.73i·4-s + 2.48·6-s + (−2.25 − 2.25i)7-s + (6.32 − 6.32i)8-s + 8.42i·9-s + 3.31·11-s + (−3.60 − 3.60i)12-s + (7.80 − 7.80i)13-s + 10.4i·14-s − 2.37·16-s + (−6.60 − 6.60i)17-s + (19.5 − 19.5i)18-s − 14.8i·19-s + ⋯
L(s)  = 1  + (−1.15 − 1.15i)2-s + (−0.178 + 0.178i)3-s + 1.68i·4-s + 0.413·6-s + (−0.322 − 0.322i)7-s + (0.790 − 0.790i)8-s + 0.936i·9-s + 0.301·11-s + (−0.300 − 0.300i)12-s + (0.600 − 0.600i)13-s + 0.746i·14-s − 0.148·16-s + (−0.388 − 0.388i)17-s + (1.08 − 1.08i)18-s − 0.780i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.793 + 0.608i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.793 + 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $-0.793 + 0.608i$
Analytic conductor: \(7.49320\)
Root analytic conductor: \(2.73737\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{275} (232, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :1),\ -0.793 + 0.608i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.187888 - 0.553724i\)
\(L(\frac12)\) \(\approx\) \(0.187888 - 0.553724i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 - 3.31T \)
good2 \( 1 + (2.31 + 2.31i)T + 4iT^{2} \)
3 \( 1 + (0.535 - 0.535i)T - 9iT^{2} \)
7 \( 1 + (2.25 + 2.25i)T + 49iT^{2} \)
13 \( 1 + (-7.80 + 7.80i)T - 169iT^{2} \)
17 \( 1 + (6.60 + 6.60i)T + 289iT^{2} \)
19 \( 1 + 14.8iT - 361T^{2} \)
23 \( 1 + (-6.20 + 6.20i)T - 529iT^{2} \)
29 \( 1 + 55.3iT - 841T^{2} \)
31 \( 1 - 7.07T + 961T^{2} \)
37 \( 1 + (-22.2 - 22.2i)T + 1.36e3iT^{2} \)
41 \( 1 + 36.8T + 1.68e3T^{2} \)
43 \( 1 + (50.8 - 50.8i)T - 1.84e3iT^{2} \)
47 \( 1 + (45.9 + 45.9i)T + 2.20e3iT^{2} \)
53 \( 1 + (-5.18 + 5.18i)T - 2.80e3iT^{2} \)
59 \( 1 + 94.6iT - 3.48e3T^{2} \)
61 \( 1 - 102.T + 3.72e3T^{2} \)
67 \( 1 + (-16.0 - 16.0i)T + 4.48e3iT^{2} \)
71 \( 1 + 12.0T + 5.04e3T^{2} \)
73 \( 1 + (-86.2 + 86.2i)T - 5.32e3iT^{2} \)
79 \( 1 + 76.3iT - 6.24e3T^{2} \)
83 \( 1 + (-85.3 + 85.3i)T - 6.88e3iT^{2} \)
89 \( 1 + 3.80iT - 7.92e3T^{2} \)
97 \( 1 + (33.8 + 33.8i)T + 9.40e3iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.28104753870397264720727924219, −10.24163081610056064993312925800, −9.736563637530718560902509034594, −8.554090068464624099226022526199, −7.86382287064453302866166384615, −6.49668634951156133110190559749, −4.87998914741756587498207057559, −3.41354654045591166848200768831, −2.15301768494693484040502746221, −0.49206001777699363159778814594, 1.30172003603646258325923180983, 3.65132152726581144212933414362, 5.50388203994454858812273790133, 6.47213679713079978864599376033, 6.98303819983371986155565730497, 8.319291829147042135514697449167, 9.008137636873306231064568134339, 9.730288341511304956766988126717, 10.83632447252608054299570496254, 11.98142922331226193874589789086

Graph of the $Z$-function along the critical line