Properties

Label 2-275-11.10-c2-0-34
Degree $2$
Conductor $275$
Sign $-0.621 - 0.783i$
Analytic cond. $7.49320$
Root an. cond. $2.73737$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.27i·2-s + 1.25·3-s − 6.73·4-s − 4.10i·6-s − 3.94i·7-s + 8.97i·8-s − 7.43·9-s + (−6.83 − 8.61i)11-s − 8.43·12-s + 6.61i·13-s − 12.9·14-s + 2.44·16-s + 1.49i·17-s + 24.3i·18-s − 18.5i·19-s + ⋯
L(s)  = 1  − 1.63i·2-s + 0.417·3-s − 1.68·4-s − 0.683i·6-s − 0.563i·7-s + 1.12i·8-s − 0.825·9-s + (−0.621 − 0.783i)11-s − 0.702·12-s + 0.509i·13-s − 0.922·14-s + 0.152·16-s + 0.0876i·17-s + 1.35i·18-s − 0.977i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.621 - 0.783i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.621 - 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $-0.621 - 0.783i$
Analytic conductor: \(7.49320\)
Root analytic conductor: \(2.73737\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{275} (76, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :1),\ -0.621 - 0.783i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.422564 + 0.874256i\)
\(L(\frac12)\) \(\approx\) \(0.422564 + 0.874256i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + (6.83 + 8.61i)T \)
good2 \( 1 + 3.27iT - 4T^{2} \)
3 \( 1 - 1.25T + 9T^{2} \)
7 \( 1 + 3.94iT - 49T^{2} \)
13 \( 1 - 6.61iT - 169T^{2} \)
17 \( 1 - 1.49iT - 289T^{2} \)
19 \( 1 + 18.5iT - 361T^{2} \)
23 \( 1 + 18.1T + 529T^{2} \)
29 \( 1 - 24.3iT - 841T^{2} \)
31 \( 1 + 16.8T + 961T^{2} \)
37 \( 1 - 65.2T + 1.36e3T^{2} \)
41 \( 1 + 67.5iT - 1.68e3T^{2} \)
43 \( 1 + 65.6iT - 1.84e3T^{2} \)
47 \( 1 - 81.4T + 2.20e3T^{2} \)
53 \( 1 + 16.2T + 2.80e3T^{2} \)
59 \( 1 + 75.7T + 3.48e3T^{2} \)
61 \( 1 + 4.85iT - 3.72e3T^{2} \)
67 \( 1 - 12.1T + 4.48e3T^{2} \)
71 \( 1 + 79.6T + 5.04e3T^{2} \)
73 \( 1 + 42.6iT - 5.32e3T^{2} \)
79 \( 1 + 77.6iT - 6.24e3T^{2} \)
83 \( 1 - 37.1iT - 6.88e3T^{2} \)
89 \( 1 + 102.T + 7.92e3T^{2} \)
97 \( 1 - 11.4T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.99082740704039805199918422673, −10.47307151149670235704723435653, −9.231762646294220614293608845770, −8.658258823274776792515937173070, −7.34671610484139465521544276839, −5.69593452348293353849142515576, −4.27551124669365425147960231908, −3.23758794246787053125275189064, −2.21951525396654573734977351953, −0.44441382399085907021076945638, 2.60066219091711568433175871640, 4.37144057483473114438148440350, 5.61108919661833256624161374515, 6.17786295407700550637458378877, 7.73126184481126929823326326841, 7.983582736142862002611663121218, 9.092467930171954027727153063905, 9.945580601480142014399239231189, 11.40042834919988642431554595516, 12.56946386197831728650374857044

Graph of the $Z$-function along the critical line