Properties

Label 2-275-11.10-c2-0-20
Degree $2$
Conductor $275$
Sign $0.601 + 0.798i$
Analytic cond. $7.49320$
Root an. cond. $2.73737$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.66i·2-s − 2.79·3-s + 1.21·4-s − 4.66i·6-s − 6.72i·7-s + 8.70i·8-s − 1.18·9-s + (−6.62 − 8.78i)11-s − 3.40·12-s − 2.91i·13-s + 11.2·14-s − 9.63·16-s − 30.9i·17-s − 1.98i·18-s + 4.49i·19-s + ⋯
L(s)  = 1  + 0.833i·2-s − 0.931·3-s + 0.304·4-s − 0.776i·6-s − 0.960i·7-s + 1.08i·8-s − 0.131·9-s + (−0.601 − 0.798i)11-s − 0.283·12-s − 0.224i·13-s + 0.800·14-s − 0.602·16-s − 1.82i·17-s − 0.110i·18-s + 0.236i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.601 + 0.798i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.601 + 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $0.601 + 0.798i$
Analytic conductor: \(7.49320\)
Root analytic conductor: \(2.73737\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{275} (76, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :1),\ 0.601 + 0.798i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.761664 - 0.379683i\)
\(L(\frac12)\) \(\approx\) \(0.761664 - 0.379683i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + (6.62 + 8.78i)T \)
good2 \( 1 - 1.66iT - 4T^{2} \)
3 \( 1 + 2.79T + 9T^{2} \)
7 \( 1 + 6.72iT - 49T^{2} \)
13 \( 1 + 2.91iT - 169T^{2} \)
17 \( 1 + 30.9iT - 289T^{2} \)
19 \( 1 - 4.49iT - 361T^{2} \)
23 \( 1 + 13.0T + 529T^{2} \)
29 \( 1 + 44.8iT - 841T^{2} \)
31 \( 1 - 26.1T + 961T^{2} \)
37 \( 1 - 28.8T + 1.36e3T^{2} \)
41 \( 1 + 24.6iT - 1.68e3T^{2} \)
43 \( 1 + 2.28iT - 1.84e3T^{2} \)
47 \( 1 - 2.33T + 2.20e3T^{2} \)
53 \( 1 + 93.1T + 2.80e3T^{2} \)
59 \( 1 + 108.T + 3.48e3T^{2} \)
61 \( 1 + 54.7iT - 3.72e3T^{2} \)
67 \( 1 + 9.01T + 4.48e3T^{2} \)
71 \( 1 + 1.24T + 5.04e3T^{2} \)
73 \( 1 - 24.1iT - 5.32e3T^{2} \)
79 \( 1 - 108. iT - 6.24e3T^{2} \)
83 \( 1 - 8.27iT - 6.88e3T^{2} \)
89 \( 1 - 84.8T + 7.92e3T^{2} \)
97 \( 1 + 160.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.35119179035044036753737624897, −10.87100021050466173373667820625, −9.745794989308527562791885818183, −8.217070500476121413279164778422, −7.49526935159263561072020925873, −6.44547509160254358990041545073, −5.68795839024220649962936597016, −4.68791557915054827516217297358, −2.82747079177328037792819457459, −0.46145367619635709143238452964, 1.69502287434634950291595396452, 2.96250637443861823513601532310, 4.57182529911746539481806034457, 5.84461809727691939216184834178, 6.55909016290439144040710173788, 7.972440944671738289025492431476, 9.202860963412672378351949937093, 10.36616417913330261578689287078, 10.87334877412813624194903593359, 11.87814300253995420930901858267

Graph of the $Z$-function along the critical line