| L(s) = 1 | − 1.47·2-s + (−0.500 − 1.53i)3-s + 0.164·4-s + (−0.844 + 2.07i)5-s + (0.736 + 2.26i)6-s + (−1.36 + 0.991i)7-s + 2.70·8-s + (0.306 − 0.222i)9-s + (1.24 − 3.04i)10-s + (3.31 + 0.00241i)11-s + (−0.0822 − 0.253i)12-s + (0.766 − 0.557i)13-s + (2.00 − 1.45i)14-s + (3.61 + 0.264i)15-s − 4.30·16-s + (−2.10 − 6.48i)17-s + ⋯ |
| L(s) = 1 | − 1.04·2-s + (−0.288 − 0.889i)3-s + 0.0822·4-s + (−0.377 + 0.925i)5-s + (0.300 + 0.924i)6-s + (−0.515 + 0.374i)7-s + 0.954·8-s + (0.102 − 0.0741i)9-s + (0.392 − 0.963i)10-s + (0.999 + 0.000729i)11-s + (−0.0237 − 0.0730i)12-s + (0.212 − 0.154i)13-s + (0.536 − 0.389i)14-s + (0.932 + 0.0683i)15-s − 1.07·16-s + (−0.511 − 1.57i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.634 + 0.773i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.634 + 0.773i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.530361 - 0.250979i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.530361 - 0.250979i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (0.844 - 2.07i)T \) |
| 11 | \( 1 + (-3.31 - 0.00241i)T \) |
| good | 2 | \( 1 + 1.47T + 2T^{2} \) |
| 3 | \( 1 + (0.500 + 1.53i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (1.36 - 0.991i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-0.766 + 0.557i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.10 + 6.48i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 - 1.90T + 19T^{2} \) |
| 23 | \( 1 + (-1.35 + 4.16i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 - 5.85T + 29T^{2} \) |
| 31 | \( 1 + (-7.43 - 5.40i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-6.42 - 4.67i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-3.14 + 9.66i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 8.15T + 43T^{2} \) |
| 47 | \( 1 + (-1.63 - 5.02i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-1.71 + 5.27i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-1.22 - 0.888i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (9.36 + 6.80i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (3.44 - 2.49i)T + (20.7 - 63.7i)T^{2} \) |
| 71 | \( 1 + (0.393 - 0.285i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (4.38 + 13.5i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (2.91 - 8.97i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.05 - 6.32i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (-2.31 + 7.12i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (4.84 - 14.9i)T + (-78.4 - 57.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.72214241180922606618612446943, −10.74737542593060811587495834091, −9.726087902362635155323292893075, −8.957908740217392284136403662611, −7.78785628594247319002705741011, −6.92629505187741363050352661668, −6.35195903291495253335345520155, −4.43295757186533062260677983454, −2.73736408388505639466742552014, −0.849893895142555609507232306388,
1.21135689941596793366133127183, 4.01850838954551888614110999698, 4.47924885867612324085125253675, 6.04038317359907279885332659579, 7.47303602765833127344240224430, 8.456666165296819278525220848369, 9.314948920329145917858228478462, 9.884657375305300386909842096060, 10.80830662776052306039282994736, 11.70863439998556997156284818241