L(s) = 1 | − 3.42i·5-s + 0.394·7-s + 2.33i·11-s + 3.36i·13-s − 0.494i·17-s + (0.300 + 4.34i)19-s + 3.79i·23-s − 6.75·25-s + 2.14·29-s + 7.04i·31-s − 1.35i·35-s + 7.30i·37-s + 3.81·41-s + 8.45·43-s + 2.43i·47-s + ⋯ |
L(s) = 1 | − 1.53i·5-s + 0.148·7-s + 0.703i·11-s + 0.933i·13-s − 0.119i·17-s + (0.0690 + 0.997i)19-s + 0.790i·23-s − 1.35·25-s + 0.399·29-s + 1.26i·31-s − 0.228i·35-s + 1.20i·37-s + 0.595·41-s + 1.28·43-s + 0.355i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.548117145\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.548117145\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (-0.300 - 4.34i)T \) |
good | 5 | \( 1 + 3.42iT - 5T^{2} \) |
| 7 | \( 1 - 0.394T + 7T^{2} \) |
| 11 | \( 1 - 2.33iT - 11T^{2} \) |
| 13 | \( 1 - 3.36iT - 13T^{2} \) |
| 17 | \( 1 + 0.494iT - 17T^{2} \) |
| 23 | \( 1 - 3.79iT - 23T^{2} \) |
| 29 | \( 1 - 2.14T + 29T^{2} \) |
| 31 | \( 1 - 7.04iT - 31T^{2} \) |
| 37 | \( 1 - 7.30iT - 37T^{2} \) |
| 41 | \( 1 - 3.81T + 41T^{2} \) |
| 43 | \( 1 - 8.45T + 43T^{2} \) |
| 47 | \( 1 - 2.43iT - 47T^{2} \) |
| 53 | \( 1 + 10.9T + 53T^{2} \) |
| 59 | \( 1 - 6.33T + 59T^{2} \) |
| 61 | \( 1 + 10.5T + 61T^{2} \) |
| 67 | \( 1 + 5.01iT - 67T^{2} \) |
| 71 | \( 1 - 0.759T + 71T^{2} \) |
| 73 | \( 1 - 3.06T + 73T^{2} \) |
| 79 | \( 1 - 6.40iT - 79T^{2} \) |
| 83 | \( 1 - 1.54iT - 83T^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 + 1.71iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.978252283941157666483600688985, −8.185080802797480898078714371404, −7.57713357152765820233320487509, −6.58718373937996131531561152033, −5.72281681428625190314208986659, −4.79303425787375993177599634423, −4.47209584271183464595753415237, −3.36074612651371626150426550222, −1.88609722570786877711284702513, −1.19866591368158972790674364463,
0.54239021012702089860349712396, 2.31749561623947648162121564193, 2.94072726966695542588225919662, 3.75727936820041551364535834475, 4.82863184353351927493925882875, 5.95035812269721095932423483703, 6.33174919807929315440383564514, 7.32675213771635826924069589875, 7.78960579596512029117383956863, 8.709650990943356991366368655355