Properties

Label 2-2736-57.56-c1-0-7
Degree $2$
Conductor $2736$
Sign $0.774 - 0.632i$
Analytic cond. $21.8470$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.42i·5-s + 0.394·7-s + 2.33i·11-s + 3.36i·13-s − 0.494i·17-s + (0.300 + 4.34i)19-s + 3.79i·23-s − 6.75·25-s + 2.14·29-s + 7.04i·31-s − 1.35i·35-s + 7.30i·37-s + 3.81·41-s + 8.45·43-s + 2.43i·47-s + ⋯
L(s)  = 1  − 1.53i·5-s + 0.148·7-s + 0.703i·11-s + 0.933i·13-s − 0.119i·17-s + (0.0690 + 0.997i)19-s + 0.790i·23-s − 1.35·25-s + 0.399·29-s + 1.26i·31-s − 0.228i·35-s + 1.20i·37-s + 0.595·41-s + 1.28·43-s + 0.355i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2736\)    =    \(2^{4} \cdot 3^{2} \cdot 19\)
Sign: $0.774 - 0.632i$
Analytic conductor: \(21.8470\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2736} (1025, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2736,\ (\ :1/2),\ 0.774 - 0.632i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.548117145\)
\(L(\frac12)\) \(\approx\) \(1.548117145\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + (-0.300 - 4.34i)T \)
good5 \( 1 + 3.42iT - 5T^{2} \)
7 \( 1 - 0.394T + 7T^{2} \)
11 \( 1 - 2.33iT - 11T^{2} \)
13 \( 1 - 3.36iT - 13T^{2} \)
17 \( 1 + 0.494iT - 17T^{2} \)
23 \( 1 - 3.79iT - 23T^{2} \)
29 \( 1 - 2.14T + 29T^{2} \)
31 \( 1 - 7.04iT - 31T^{2} \)
37 \( 1 - 7.30iT - 37T^{2} \)
41 \( 1 - 3.81T + 41T^{2} \)
43 \( 1 - 8.45T + 43T^{2} \)
47 \( 1 - 2.43iT - 47T^{2} \)
53 \( 1 + 10.9T + 53T^{2} \)
59 \( 1 - 6.33T + 59T^{2} \)
61 \( 1 + 10.5T + 61T^{2} \)
67 \( 1 + 5.01iT - 67T^{2} \)
71 \( 1 - 0.759T + 71T^{2} \)
73 \( 1 - 3.06T + 73T^{2} \)
79 \( 1 - 6.40iT - 79T^{2} \)
83 \( 1 - 1.54iT - 83T^{2} \)
89 \( 1 - 13.2T + 89T^{2} \)
97 \( 1 + 1.71iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.978252283941157666483600688985, −8.185080802797480898078714371404, −7.57713357152765820233320487509, −6.58718373937996131531561152033, −5.72281681428625190314208986659, −4.79303425787375993177599634423, −4.47209584271183464595753415237, −3.36074612651371626150426550222, −1.88609722570786877711284702513, −1.19866591368158972790674364463, 0.54239021012702089860349712396, 2.31749561623947648162121564193, 2.94072726966695542588225919662, 3.75727936820041551364535834475, 4.82863184353351927493925882875, 5.95035812269721095932423483703, 6.33174919807929315440383564514, 7.32675213771635826924069589875, 7.78960579596512029117383956863, 8.709650990943356991366368655355

Graph of the $Z$-function along the critical line