L(s) = 1 | + 3.41·3-s + 5-s + 2.42i·7-s + 8.68·9-s − 3.57·11-s + 2.84i·13-s + 3.41·15-s + (0.785 + 4.04i)17-s + 4.03i·19-s + 8.29i·21-s − 6.96i·23-s + 25-s + 19.4·27-s − 3.63·29-s + 1.77i·31-s + ⋯ |
L(s) = 1 | + 1.97·3-s + 0.447·5-s + 0.917i·7-s + 2.89·9-s − 1.07·11-s + 0.789i·13-s + 0.882·15-s + (0.190 + 0.981i)17-s + 0.925i·19-s + 1.81i·21-s − 1.45i·23-s + 0.200·25-s + 3.73·27-s − 0.675·29-s + 0.318i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.689 - 0.724i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.689 - 0.724i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.056166474\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.056166474\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 + (-0.785 - 4.04i)T \) |
good | 3 | \( 1 - 3.41T + 3T^{2} \) |
| 7 | \( 1 - 2.42iT - 7T^{2} \) |
| 11 | \( 1 + 3.57T + 11T^{2} \) |
| 13 | \( 1 - 2.84iT - 13T^{2} \) |
| 19 | \( 1 - 4.03iT - 19T^{2} \) |
| 23 | \( 1 + 6.96iT - 23T^{2} \) |
| 29 | \( 1 + 3.63T + 29T^{2} \) |
| 31 | \( 1 - 1.77iT - 31T^{2} \) |
| 37 | \( 1 - 2.43T + 37T^{2} \) |
| 41 | \( 1 - 5.61iT - 41T^{2} \) |
| 43 | \( 1 + 11.0iT - 43T^{2} \) |
| 47 | \( 1 + 5.57T + 47T^{2} \) |
| 53 | \( 1 - 6.19iT - 53T^{2} \) |
| 59 | \( 1 + 5.08iT - 59T^{2} \) |
| 61 | \( 1 - 5.87T + 61T^{2} \) |
| 67 | \( 1 - 3.32iT - 67T^{2} \) |
| 71 | \( 1 + 9.10iT - 71T^{2} \) |
| 73 | \( 1 + 4.57iT - 73T^{2} \) |
| 79 | \( 1 + 14.9iT - 79T^{2} \) |
| 83 | \( 1 - 7.53iT - 83T^{2} \) |
| 89 | \( 1 + 5.67T + 89T^{2} \) |
| 97 | \( 1 + 2.50iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.801580066805867927228524286208, −8.318777428615055024023787311413, −7.73592093049568379275127419969, −6.80480547155023253692142621044, −5.92683758711041499627777895141, −4.83779488950277175039955651591, −3.95629052622613723328754258789, −3.06210458240004675700687516846, −2.26539775763952892964236710704, −1.73030676191247502335513606550,
1.03884481831961777166909404868, 2.26645814971500730986841943902, 2.95515242443506919426456878839, 3.65589446975791868212034112973, 4.63667339566457249324598765791, 5.46561255521788656375544940230, 6.90702113144547675339429077096, 7.46206412582857781984493701410, 7.904726286055061416227291320480, 8.685215545965205447780898493188