L(s) = 1 | + 0.528·3-s + 5-s − 4.36i·7-s − 2.72·9-s − 0.873·11-s + 6.88i·13-s + 0.528·15-s + (−3.39 + 2.33i)17-s + 3.88i·19-s − 2.30i·21-s − 4.09i·23-s + 25-s − 3.02·27-s − 6.41·29-s + 6.12i·31-s + ⋯ |
L(s) = 1 | + 0.304·3-s + 0.447·5-s − 1.65i·7-s − 0.907·9-s − 0.263·11-s + 1.90i·13-s + 0.136·15-s + (−0.824 + 0.566i)17-s + 0.892i·19-s − 0.503i·21-s − 0.853i·23-s + 0.200·25-s − 0.581·27-s − 1.19·29-s + 1.09i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.140 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.140 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.068397735\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.068397735\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 + (3.39 - 2.33i)T \) |
good | 3 | \( 1 - 0.528T + 3T^{2} \) |
| 7 | \( 1 + 4.36iT - 7T^{2} \) |
| 11 | \( 1 + 0.873T + 11T^{2} \) |
| 13 | \( 1 - 6.88iT - 13T^{2} \) |
| 19 | \( 1 - 3.88iT - 19T^{2} \) |
| 23 | \( 1 + 4.09iT - 23T^{2} \) |
| 29 | \( 1 + 6.41T + 29T^{2} \) |
| 31 | \( 1 - 6.12iT - 31T^{2} \) |
| 37 | \( 1 - 6.96T + 37T^{2} \) |
| 41 | \( 1 - 12.0iT - 41T^{2} \) |
| 43 | \( 1 - 9.29iT - 43T^{2} \) |
| 47 | \( 1 + 1.39T + 47T^{2} \) |
| 53 | \( 1 + 5.12iT - 53T^{2} \) |
| 59 | \( 1 + 5.18iT - 59T^{2} \) |
| 61 | \( 1 - 7.45T + 61T^{2} \) |
| 67 | \( 1 - 1.10iT - 67T^{2} \) |
| 71 | \( 1 + 8.33iT - 71T^{2} \) |
| 73 | \( 1 - 1.86iT - 73T^{2} \) |
| 79 | \( 1 - 3.18iT - 79T^{2} \) |
| 83 | \( 1 - 4.38iT - 83T^{2} \) |
| 89 | \( 1 - 9.98T + 89T^{2} \) |
| 97 | \( 1 - 6.33iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.090355051748709872418687715343, −8.232243198963705112784391800907, −7.61032289583663799316539380124, −6.48465943701504834448036571334, −6.40507620851811885107758628636, −4.96070345602790222814062352697, −4.23738873612037043268313385908, −3.52405365611274766952255342911, −2.30767382456882737835192719155, −1.35756397871374475377613993814,
0.31451490801237355098367853657, 2.29421204247195466185900931226, 2.58482992000734125568503340041, 3.54329719126651233448452451732, 5.03732285172630100452204122177, 5.67904026842703198652985290384, 5.89550731468194404744396403602, 7.25362951933437926370695211860, 7.975454012490179443593529768130, 8.863636808169771039269788430945