Properties

Label 2-2720-136.101-c1-0-70
Degree $2$
Conductor $2720$
Sign $-0.902 - 0.430i$
Analytic cond. $21.7193$
Root an. cond. $4.66039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.228·3-s + 5-s − 3.99i·7-s − 2.94·9-s − 3.75·11-s − 3.12i·13-s − 0.228·15-s + (3.25 + 2.53i)17-s − 1.96i·19-s + 0.913i·21-s + 0.990i·23-s + 25-s + 1.36·27-s − 4.34·29-s + 2.33i·31-s + ⋯
L(s)  = 1  − 0.132·3-s + 0.447·5-s − 1.50i·7-s − 0.982·9-s − 1.13·11-s − 0.865i·13-s − 0.0590·15-s + (0.788 + 0.614i)17-s − 0.450i·19-s + 0.199i·21-s + 0.206i·23-s + 0.200·25-s + 0.261·27-s − 0.806·29-s + 0.418i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.902 - 0.430i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.902 - 0.430i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2720\)    =    \(2^{5} \cdot 5 \cdot 17\)
Sign: $-0.902 - 0.430i$
Analytic conductor: \(21.7193\)
Root analytic conductor: \(4.66039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2720} (2481, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2720,\ (\ :1/2),\ -0.902 - 0.430i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2105202527\)
\(L(\frac12)\) \(\approx\) \(0.2105202527\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
17 \( 1 + (-3.25 - 2.53i)T \)
good3 \( 1 + 0.228T + 3T^{2} \)
7 \( 1 + 3.99iT - 7T^{2} \)
11 \( 1 + 3.75T + 11T^{2} \)
13 \( 1 + 3.12iT - 13T^{2} \)
19 \( 1 + 1.96iT - 19T^{2} \)
23 \( 1 - 0.990iT - 23T^{2} \)
29 \( 1 + 4.34T + 29T^{2} \)
31 \( 1 - 2.33iT - 31T^{2} \)
37 \( 1 + 6.42T + 37T^{2} \)
41 \( 1 + 5.65iT - 41T^{2} \)
43 \( 1 - 3.10iT - 43T^{2} \)
47 \( 1 - 0.730T + 47T^{2} \)
53 \( 1 - 10.5iT - 53T^{2} \)
59 \( 1 - 14.8iT - 59T^{2} \)
61 \( 1 + 8.99T + 61T^{2} \)
67 \( 1 - 7.33iT - 67T^{2} \)
71 \( 1 + 0.713iT - 71T^{2} \)
73 \( 1 - 7.10iT - 73T^{2} \)
79 \( 1 + 8.64iT - 79T^{2} \)
83 \( 1 + 11.2iT - 83T^{2} \)
89 \( 1 + 16.0T + 89T^{2} \)
97 \( 1 + 18.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.295815272799353033457780899433, −7.59375571739973540929267639646, −7.05820357037991075769452759368, −5.83288611216585781255547441882, −5.49319731264379180520648764126, −4.47516921878598492022600790706, −3.43175605354755679958937188824, −2.71555514081169997087213981419, −1.28776227588187789613747834212, −0.06749007609547348601241389146, 1.88997022360410384568122669388, 2.60471351825840699393896929727, 3.42945798777566600301144200710, 4.95169402129345325087160534369, 5.42292388427522692562226933289, 5.99722148020157010674337280187, 6.86209412489269046608888431350, 8.010988839508126457821085470893, 8.438872631710661639872960923817, 9.361608342270591474760779528783

Graph of the $Z$-function along the critical line