| L(s) = 1 | + 1.11i·3-s + i·5-s + 3.27·7-s + 1.75·9-s − 0.150i·11-s − 1.29i·13-s − 1.11·15-s − 17-s + 4.68i·19-s + 3.64i·21-s + 6.66·23-s − 25-s + 5.30i·27-s − 4.60i·29-s + 2.35·31-s + ⋯ |
| L(s) = 1 | + 0.643i·3-s + 0.447i·5-s + 1.23·7-s + 0.585·9-s − 0.0453i·11-s − 0.358i·13-s − 0.287·15-s − 0.242·17-s + 1.07i·19-s + 0.796i·21-s + 1.39·23-s − 0.200·25-s + 1.02i·27-s − 0.856i·29-s + 0.423·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.450 - 0.892i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.450 - 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.368663763\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.368663763\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 17 | \( 1 + T \) |
| good | 3 | \( 1 - 1.11iT - 3T^{2} \) |
| 7 | \( 1 - 3.27T + 7T^{2} \) |
| 11 | \( 1 + 0.150iT - 11T^{2} \) |
| 13 | \( 1 + 1.29iT - 13T^{2} \) |
| 19 | \( 1 - 4.68iT - 19T^{2} \) |
| 23 | \( 1 - 6.66T + 23T^{2} \) |
| 29 | \( 1 + 4.60iT - 29T^{2} \) |
| 31 | \( 1 - 2.35T + 31T^{2} \) |
| 37 | \( 1 + 3.67iT - 37T^{2} \) |
| 41 | \( 1 + 1.59T + 41T^{2} \) |
| 43 | \( 1 - 2.84iT - 43T^{2} \) |
| 47 | \( 1 - 7.68T + 47T^{2} \) |
| 53 | \( 1 - 2.83iT - 53T^{2} \) |
| 59 | \( 1 - 1.32iT - 59T^{2} \) |
| 61 | \( 1 + 6.88iT - 61T^{2} \) |
| 67 | \( 1 + 1.32iT - 67T^{2} \) |
| 71 | \( 1 - 16.0T + 71T^{2} \) |
| 73 | \( 1 + 2.26T + 73T^{2} \) |
| 79 | \( 1 + 4.94T + 79T^{2} \) |
| 83 | \( 1 + 9.14iT - 83T^{2} \) |
| 89 | \( 1 + 11.5T + 89T^{2} \) |
| 97 | \( 1 - 2.03T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.012745577726070081101084105821, −8.129387153493918226019205358579, −7.57533742306764485258698825568, −6.74824375865516138825982127921, −5.73667539129365555116799311917, −4.95879840220684255033802213251, −4.27667363220567961799581341520, −3.45119968920818282054964081285, −2.29118376914547427490813838151, −1.19737319366033618059611016687,
0.938157774562284603347315076135, 1.71051178407016401606647436600, 2.73204318048848171519058775971, 4.14022920710240742267523278275, 4.80813234125985484129072529165, 5.42721263204494170439553606021, 6.73552292486618048524031765151, 7.08376404611362459818163101772, 7.953176173635896070905390021278, 8.632279654853985943216404772724