Properties

Label 2-2720-8.5-c1-0-6
Degree $2$
Conductor $2720$
Sign $-0.651 - 0.758i$
Analytic cond. $21.7193$
Root an. cond. $4.66039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.272i·3-s + i·5-s − 4.61·7-s + 2.92·9-s − 2.76i·11-s − 4.63i·13-s − 0.272·15-s − 17-s + 5.52i·19-s − 1.25i·21-s + 5.47·23-s − 25-s + 1.61i·27-s + 3.06i·29-s − 9.16·31-s + ⋯
L(s)  = 1  + 0.157i·3-s + 0.447i·5-s − 1.74·7-s + 0.975·9-s − 0.832i·11-s − 1.28i·13-s − 0.0704·15-s − 0.242·17-s + 1.26i·19-s − 0.274i·21-s + 1.14·23-s − 0.200·25-s + 0.311i·27-s + 0.569i·29-s − 1.64·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.651 - 0.758i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.651 - 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2720\)    =    \(2^{5} \cdot 5 \cdot 17\)
Sign: $-0.651 - 0.758i$
Analytic conductor: \(21.7193\)
Root analytic conductor: \(4.66039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2720} (1361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2720,\ (\ :1/2),\ -0.651 - 0.758i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7087003430\)
\(L(\frac12)\) \(\approx\) \(0.7087003430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - iT \)
17 \( 1 + T \)
good3 \( 1 - 0.272iT - 3T^{2} \)
7 \( 1 + 4.61T + 7T^{2} \)
11 \( 1 + 2.76iT - 11T^{2} \)
13 \( 1 + 4.63iT - 13T^{2} \)
19 \( 1 - 5.52iT - 19T^{2} \)
23 \( 1 - 5.47T + 23T^{2} \)
29 \( 1 - 3.06iT - 29T^{2} \)
31 \( 1 + 9.16T + 31T^{2} \)
37 \( 1 - 10.4iT - 37T^{2} \)
41 \( 1 - 3.77T + 41T^{2} \)
43 \( 1 - 0.00838iT - 43T^{2} \)
47 \( 1 + 0.465T + 47T^{2} \)
53 \( 1 + 2.67iT - 53T^{2} \)
59 \( 1 - 13.4iT - 59T^{2} \)
61 \( 1 - 5.47iT - 61T^{2} \)
67 \( 1 + 1.92iT - 67T^{2} \)
71 \( 1 + 6.91T + 71T^{2} \)
73 \( 1 + 15.2T + 73T^{2} \)
79 \( 1 + 1.11T + 79T^{2} \)
83 \( 1 - 2.75iT - 83T^{2} \)
89 \( 1 + 9.24T + 89T^{2} \)
97 \( 1 + 16.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.216141767123427348881005068267, −8.413413141047714647209120753776, −7.38569741152092148791379451532, −6.89123630237500222461261896286, −6.00591701227140118733057878053, −5.48244544744195221305066338743, −4.14161202051723879968206923672, −3.30578666524402495846246129419, −2.90687623836644222173031311096, −1.21967669062230507454487277303, 0.24275833280837321180423859382, 1.71651364124186670597227748066, 2.71572905571794406837996444003, 3.89980593167803256372732904216, 4.43678394735152867436897964599, 5.46583786284844333975229425123, 6.54101116889101783827909795962, 6.98529945233641535273511706933, 7.46822163484255831443451412113, 8.953027157463845181073568211408

Graph of the $Z$-function along the critical line