Properties

Label 2-2720-8.5-c1-0-17
Degree $2$
Conductor $2720$
Sign $-0.413 - 0.910i$
Analytic cond. $21.7193$
Root an. cond. $4.66039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.183i·3-s + i·5-s + 1.46·7-s + 2.96·9-s + 5.80i·11-s + 2.09i·13-s − 0.183·15-s − 17-s + 2.08i·19-s + 0.268i·21-s − 6.21·23-s − 25-s + 1.09i·27-s + 1.31i·29-s + 1.86·31-s + ⋯
L(s)  = 1  + 0.105i·3-s + 0.447i·5-s + 0.553·7-s + 0.988·9-s + 1.74i·11-s + 0.579i·13-s − 0.0472·15-s − 0.242·17-s + 0.479i·19-s + 0.0585i·21-s − 1.29·23-s − 0.200·25-s + 0.210i·27-s + 0.243i·29-s + 0.334·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.413 - 0.910i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.413 - 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2720\)    =    \(2^{5} \cdot 5 \cdot 17\)
Sign: $-0.413 - 0.910i$
Analytic conductor: \(21.7193\)
Root analytic conductor: \(4.66039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2720} (1361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2720,\ (\ :1/2),\ -0.413 - 0.910i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.724004304\)
\(L(\frac12)\) \(\approx\) \(1.724004304\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - iT \)
17 \( 1 + T \)
good3 \( 1 - 0.183iT - 3T^{2} \)
7 \( 1 - 1.46T + 7T^{2} \)
11 \( 1 - 5.80iT - 11T^{2} \)
13 \( 1 - 2.09iT - 13T^{2} \)
19 \( 1 - 2.08iT - 19T^{2} \)
23 \( 1 + 6.21T + 23T^{2} \)
29 \( 1 - 1.31iT - 29T^{2} \)
31 \( 1 - 1.86T + 31T^{2} \)
37 \( 1 + 3.34iT - 37T^{2} \)
41 \( 1 - 9.48T + 41T^{2} \)
43 \( 1 - 12.4iT - 43T^{2} \)
47 \( 1 + 13.2T + 47T^{2} \)
53 \( 1 - 0.551iT - 53T^{2} \)
59 \( 1 + 8.97iT - 59T^{2} \)
61 \( 1 + 15.0iT - 61T^{2} \)
67 \( 1 + 6.68iT - 67T^{2} \)
71 \( 1 + 9.24T + 71T^{2} \)
73 \( 1 - 4.25T + 73T^{2} \)
79 \( 1 + 6.30T + 79T^{2} \)
83 \( 1 - 6.49iT - 83T^{2} \)
89 \( 1 - 10.1T + 89T^{2} \)
97 \( 1 - 10.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.416987492462300833814450214587, −7.975328116694046472662463133552, −7.70536146107665040564088729015, −6.76112043874866183717290023869, −6.23850831279345347093325215034, −4.83774774387046025576016975214, −4.50399673700498495457305186163, −3.59282088618058987005119930694, −2.16154787590797829950450264130, −1.61684689093083680476079235745, 0.55726575759015238514125766763, 1.59703445422101084889941179742, 2.82267624700321040904312602211, 3.87693709790311986107266661229, 4.60151580082503874209583125983, 5.57727063853851276211583353916, 6.15395723607314192767319330373, 7.16330500116271199942788272342, 7.994003998274448466616901413152, 8.466232232243305640064599675641

Graph of the $Z$-function along the critical line