| L(s) = 1 | − i·3-s − i·5-s + 4·7-s + 2·9-s + 2i·11-s − 3i·13-s − 15-s + 17-s + 5i·19-s − 4i·21-s + 4·23-s − 25-s − 5i·27-s − 9i·29-s + 5·31-s + ⋯ |
| L(s) = 1 | − 0.577i·3-s − 0.447i·5-s + 1.51·7-s + 0.666·9-s + 0.603i·11-s − 0.832i·13-s − 0.258·15-s + 0.242·17-s + 1.14i·19-s − 0.872i·21-s + 0.834·23-s − 0.200·25-s − 0.962i·27-s − 1.67i·29-s + 0.898·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.515756064\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.515756064\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 17 | \( 1 - T \) |
| good | 3 | \( 1 + iT - 3T^{2} \) |
| 7 | \( 1 - 4T + 7T^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 13 | \( 1 + 3iT - 13T^{2} \) |
| 19 | \( 1 - 5iT - 19T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + 9iT - 29T^{2} \) |
| 31 | \( 1 - 5T + 31T^{2} \) |
| 37 | \( 1 - 10iT - 37T^{2} \) |
| 41 | \( 1 - 10T + 41T^{2} \) |
| 43 | \( 1 - 10iT - 43T^{2} \) |
| 47 | \( 1 + 11T + 47T^{2} \) |
| 53 | \( 1 - 5iT - 53T^{2} \) |
| 59 | \( 1 + 5iT - 59T^{2} \) |
| 61 | \( 1 - iT - 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 7T + 71T^{2} \) |
| 73 | \( 1 - T + 73T^{2} \) |
| 79 | \( 1 + 16T + 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + 7T + 89T^{2} \) |
| 97 | \( 1 + 7T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.226433629917956368763346791519, −8.110602151115576243181346879899, −7.47302035811371398118670862886, −6.46235944248525995197627271823, −5.62327091404468722657439929086, −4.68133216916476495207555612649, −4.28749751017247474700206621369, −2.81942456131792309675528530009, −1.67551000938202249349609132119, −1.07577800312028185911388967408,
1.14779935578444598374888042038, 2.21013389562202689060799910479, 3.36234169919006234900263140792, 4.31734593024163560651074346886, 4.89289938944751641714948808860, 5.63802787188002359429604770530, 6.93050541514131039513184423786, 7.23037823476918319678146340768, 8.296537750865724398203420936282, 8.929826230963942263796267352500