L(s) = 1 | + (−1.51 − 1.30i)2-s + (−5.10 − 2.11i)3-s + (0.590 + 3.95i)4-s + (−1.23 + 2.97i)5-s + (4.97 + 9.86i)6-s + (5.08 − 12.2i)7-s + (4.27 − 6.76i)8-s + (15.2 + 15.2i)9-s + (5.74 − 2.89i)10-s + (10.2 − 4.23i)11-s + (5.35 − 21.4i)12-s + (−9.70 − 9.70i)13-s + (−23.7 + 11.9i)14-s + (12.5 − 12.5i)15-s + (−15.3 + 4.67i)16-s + (11.9 − 12.0i)17-s + ⋯ |
L(s) = 1 | + (−0.757 − 0.652i)2-s + (−1.70 − 0.704i)3-s + (0.147 + 0.989i)4-s + (−0.246 + 0.594i)5-s + (0.828 + 1.64i)6-s + (0.725 − 1.75i)7-s + (0.533 − 0.845i)8-s + (1.69 + 1.69i)9-s + (0.574 − 0.289i)10-s + (0.929 − 0.385i)11-s + (0.445 − 1.78i)12-s + (−0.746 − 0.746i)13-s + (−1.69 + 0.853i)14-s + (0.838 − 0.838i)15-s + (−0.956 + 0.292i)16-s + (0.704 − 0.709i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 - 0.138i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.990 - 0.138i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0307726 + 0.441039i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0307726 + 0.441039i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.51 + 1.30i)T \) |
| 17 | \( 1 + (-11.9 + 12.0i)T \) |
good | 3 | \( 1 + (5.10 + 2.11i)T + (6.36 + 6.36i)T^{2} \) |
| 5 | \( 1 + (1.23 - 2.97i)T + (-17.6 - 17.6i)T^{2} \) |
| 7 | \( 1 + (-5.08 + 12.2i)T + (-34.6 - 34.6i)T^{2} \) |
| 11 | \( 1 + (-10.2 + 4.23i)T + (85.5 - 85.5i)T^{2} \) |
| 13 | \( 1 + (9.70 + 9.70i)T + 169iT^{2} \) |
| 19 | \( 1 - 12.5iT - 361T^{2} \) |
| 23 | \( 1 + (-5.48 - 2.27i)T + (374. + 374. i)T^{2} \) |
| 29 | \( 1 + (7.99 + 3.31i)T + (594. + 594. i)T^{2} \) |
| 31 | \( 1 + (15.9 + 38.5i)T + (-679. + 679. i)T^{2} \) |
| 37 | \( 1 + (19.5 + 8.11i)T + (968. + 968. i)T^{2} \) |
| 41 | \( 1 + (9.19 + 3.80i)T + (1.18e3 + 1.18e3i)T^{2} \) |
| 43 | \( 1 - 26.4iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 49.0T + 2.20e3T^{2} \) |
| 53 | \( 1 + 13.9iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 51.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 + (-4.84 - 11.6i)T + (-2.63e3 + 2.63e3i)T^{2} \) |
| 67 | \( 1 + (70.8 + 70.8i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + (-97.1 + 40.2i)T + (3.56e3 - 3.56e3i)T^{2} \) |
| 73 | \( 1 + (123. - 51.1i)T + (3.76e3 - 3.76e3i)T^{2} \) |
| 79 | \( 1 + (-2.95 + 7.12i)T + (-4.41e3 - 4.41e3i)T^{2} \) |
| 83 | \( 1 - 58.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 127.T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-4.98 - 12.0i)T + (-6.65e3 + 6.65e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22284956355779028036732892569, −10.55874972302911533169977221857, −9.813190092347078371784116759294, −7.75899274836529919924528341031, −7.41615805569444862672191894015, −6.52503016849758132877892411762, −4.96833305870704736785984915198, −3.68334073973988623408117255877, −1.42262615955818342262994053030, −0.41082561453369098999143380833,
1.51720617722375481936030077116, 4.62579957036319452304502899720, 5.18097303218048499790469693292, 6.07940925469308507576076581970, 7.04458783468841322899756239226, 8.659466387866999212627977839301, 9.222438653230674324488296837567, 10.22156135624722842565544907784, 11.30159015207476715415942103950, 11.95671697127041663302470673937