L(s) = 1 | + (−1.13 + 0.847i)2-s + (0.907 − 0.907i)3-s + (0.562 − 1.91i)4-s + (0.218 + 0.218i)5-s + (−0.258 + 1.79i)6-s − 4.34i·7-s + (0.989 + 2.64i)8-s + 1.35i·9-s + (−0.432 − 0.0620i)10-s + (−3.20 − 3.20i)11-s + (−1.23 − 2.25i)12-s + (1.70 − 1.70i)13-s + (3.68 + 4.92i)14-s + 0.396·15-s + (−3.36 − 2.16i)16-s − 17-s + ⋯ |
L(s) = 1 | + (−0.800 + 0.599i)2-s + (0.524 − 0.524i)3-s + (0.281 − 0.959i)4-s + (0.0976 + 0.0976i)5-s + (−0.105 + 0.733i)6-s − 1.64i·7-s + (0.349 + 0.936i)8-s + 0.450i·9-s + (−0.136 − 0.0196i)10-s + (−0.964 − 0.964i)11-s + (−0.355 − 0.650i)12-s + (0.472 − 0.472i)13-s + (0.985 + 1.31i)14-s + 0.102·15-s + (−0.841 − 0.540i)16-s − 0.242·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.570 + 0.820i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.570 + 0.820i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.859042 - 0.448953i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.859042 - 0.448953i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.13 - 0.847i)T \) |
| 17 | \( 1 + T \) |
good | 3 | \( 1 + (-0.907 + 0.907i)T - 3iT^{2} \) |
| 5 | \( 1 + (-0.218 - 0.218i)T + 5iT^{2} \) |
| 7 | \( 1 + 4.34iT - 7T^{2} \) |
| 11 | \( 1 + (3.20 + 3.20i)T + 11iT^{2} \) |
| 13 | \( 1 + (-1.70 + 1.70i)T - 13iT^{2} \) |
| 19 | \( 1 + (-0.630 + 0.630i)T - 19iT^{2} \) |
| 23 | \( 1 - 0.799iT - 23T^{2} \) |
| 29 | \( 1 + (-2.21 + 2.21i)T - 29iT^{2} \) |
| 31 | \( 1 - 6.06T + 31T^{2} \) |
| 37 | \( 1 + (-4.96 - 4.96i)T + 37iT^{2} \) |
| 41 | \( 1 - 11.0iT - 41T^{2} \) |
| 43 | \( 1 + (4.85 + 4.85i)T + 43iT^{2} \) |
| 47 | \( 1 - 10.8T + 47T^{2} \) |
| 53 | \( 1 + (3.33 + 3.33i)T + 53iT^{2} \) |
| 59 | \( 1 + (3.82 + 3.82i)T + 59iT^{2} \) |
| 61 | \( 1 + (3.16 - 3.16i)T - 61iT^{2} \) |
| 67 | \( 1 + (7.94 - 7.94i)T - 67iT^{2} \) |
| 71 | \( 1 - 6.71iT - 71T^{2} \) |
| 73 | \( 1 - 10.1iT - 73T^{2} \) |
| 79 | \( 1 - 1.19T + 79T^{2} \) |
| 83 | \( 1 + (0.310 - 0.310i)T - 83iT^{2} \) |
| 89 | \( 1 + 0.417iT - 89T^{2} \) |
| 97 | \( 1 - 1.28T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35624967633013746513471767354, −10.53933398752192794038739492659, −10.01625166107773980444582116333, −8.399145211593633301848686641836, −8.007370192020288575199319554845, −7.11323636591863712061468780347, −6.08688616981393088408261208055, −4.65823691857091697458996006137, −2.80088620144029176936178471782, −0.952191651848680683715234603067,
2.11973883993109244704310768409, 3.14120790253735772793151543569, 4.62099360140903959931265726268, 6.11275443953265911906938758228, 7.51811720742024510874207198594, 8.692284528017657093384405200159, 9.135981172993474714714621720128, 9.938498154211998931250189439112, 10.97744655290974712027024410135, 12.15060038965875995584594381357