Properties

Label 2-52e2-13.12-c1-0-54
Degree $2$
Conductor $2704$
Sign $-0.832 - 0.554i$
Analytic cond. $21.5915$
Root an. cond. $4.64667$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 2i·5-s i·7-s + 6·9-s + 5i·11-s + 6i·15-s − 3·17-s − 3i·19-s + 3i·21-s − 23-s + 25-s − 9·27-s − 29-s − 8i·31-s − 15i·33-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.894i·5-s − 0.377i·7-s + 2·9-s + 1.50i·11-s + 1.54i·15-s − 0.727·17-s − 0.688i·19-s + 0.654i·21-s − 0.208·23-s + 0.200·25-s − 1.73·27-s − 0.185·29-s − 1.43i·31-s − 2.61i·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2704\)    =    \(2^{4} \cdot 13^{2}\)
Sign: $-0.832 - 0.554i$
Analytic conductor: \(21.5915\)
Root analytic conductor: \(4.64667\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2704} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 2704,\ (\ :1/2),\ -0.832 - 0.554i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 3T + 3T^{2} \)
5 \( 1 + 2iT - 5T^{2} \)
7 \( 1 + iT - 7T^{2} \)
11 \( 1 - 5iT - 11T^{2} \)
17 \( 1 + 3T + 17T^{2} \)
19 \( 1 + 3iT - 19T^{2} \)
23 \( 1 + T + 23T^{2} \)
29 \( 1 + T + 29T^{2} \)
31 \( 1 + 8iT - 31T^{2} \)
37 \( 1 - 3iT - 37T^{2} \)
41 \( 1 + 3iT - 41T^{2} \)
43 \( 1 - T + 43T^{2} \)
47 \( 1 + 4iT - 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 5iT - 59T^{2} \)
61 \( 1 + 5T + 61T^{2} \)
67 \( 1 - 7iT - 67T^{2} \)
71 \( 1 + 11iT - 71T^{2} \)
73 \( 1 - 14iT - 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 + 9iT - 89T^{2} \)
97 \( 1 - iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.355990101233446421508518074115, −7.29214797060680267001806457103, −6.86778345838691960314820289972, −5.99654022553475526064843358815, −5.16446757882146182763342433598, −4.60278737951000839790896387538, −4.09098842476873537029941688833, −2.19182737520202197889834736252, −1.08774812531711461237423951319, 0, 1.33614427190717235614202331868, 2.79505117336957982925488444193, 3.76828823816965994463499085942, 4.82658152974145223715346668608, 5.62741914629919303579721229697, 6.20262203950852294553282350452, 6.67276623521362910482932852069, 7.54613040725711209323396306153, 8.529452310642045173861355769014

Graph of the $Z$-function along the critical line