Properties

Label 2-52e2-1.1-c1-0-37
Degree $2$
Conductor $2704$
Sign $1$
Analytic cond. $21.5915$
Root an. cond. $4.64667$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.24·3-s + 0.246·5-s + 2.35·7-s + 2.04·9-s + 4.24·11-s + 0.554·15-s + 2.15·17-s + 0.0881·19-s + 5.29·21-s − 1.49·23-s − 4.93·25-s − 2.13·27-s + 4.63·29-s + 6.63·31-s + 9.54·33-s + 0.582·35-s + 5.69·37-s − 11.5·41-s + 0.295·43-s + 0.506·45-s + 7.35·47-s − 1.44·49-s + 4.85·51-s − 10.3·53-s + 1.04·55-s + 0.198·57-s + 6.78·59-s + ⋯
L(s)  = 1  + 1.29·3-s + 0.110·5-s + 0.890·7-s + 0.682·9-s + 1.28·11-s + 0.143·15-s + 0.523·17-s + 0.0202·19-s + 1.15·21-s − 0.311·23-s − 0.987·25-s − 0.411·27-s + 0.859·29-s + 1.19·31-s + 1.66·33-s + 0.0983·35-s + 0.935·37-s − 1.81·41-s + 0.0451·43-s + 0.0754·45-s + 1.07·47-s − 0.206·49-s + 0.679·51-s − 1.42·53-s + 0.141·55-s + 0.0262·57-s + 0.882·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2704\)    =    \(2^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(21.5915\)
Root analytic conductor: \(4.64667\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.599450317\)
\(L(\frac12)\) \(\approx\) \(3.599450317\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 - 2.24T + 3T^{2} \)
5 \( 1 - 0.246T + 5T^{2} \)
7 \( 1 - 2.35T + 7T^{2} \)
11 \( 1 - 4.24T + 11T^{2} \)
17 \( 1 - 2.15T + 17T^{2} \)
19 \( 1 - 0.0881T + 19T^{2} \)
23 \( 1 + 1.49T + 23T^{2} \)
29 \( 1 - 4.63T + 29T^{2} \)
31 \( 1 - 6.63T + 31T^{2} \)
37 \( 1 - 5.69T + 37T^{2} \)
41 \( 1 + 11.5T + 41T^{2} \)
43 \( 1 - 0.295T + 43T^{2} \)
47 \( 1 - 7.35T + 47T^{2} \)
53 \( 1 + 10.3T + 53T^{2} \)
59 \( 1 - 6.78T + 59T^{2} \)
61 \( 1 - 3.47T + 61T^{2} \)
67 \( 1 + 7.67T + 67T^{2} \)
71 \( 1 - 8.66T + 71T^{2} \)
73 \( 1 - 6.73T + 73T^{2} \)
79 \( 1 + 9.97T + 79T^{2} \)
83 \( 1 + 1.60T + 83T^{2} \)
89 \( 1 + 2.88T + 89T^{2} \)
97 \( 1 + 8.05T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.558200668972646953981682575503, −8.316963004057204357769601651046, −7.55814399078563229109632091398, −6.66126811803872301237941351377, −5.80448262878986490786631528333, −4.68880637238891790344981114107, −3.95861882341928241832320521658, −3.12857659046338928237243874503, −2.12416935148308569156316907932, −1.26535983341148795985608467855, 1.26535983341148795985608467855, 2.12416935148308569156316907932, 3.12857659046338928237243874503, 3.95861882341928241832320521658, 4.68880637238891790344981114107, 5.80448262878986490786631528333, 6.66126811803872301237941351377, 7.55814399078563229109632091398, 8.316963004057204357769601651046, 8.558200668972646953981682575503

Graph of the $Z$-function along the critical line