L(s) = 1 | + (−2.36 − 1.36i)7-s + (2.76 − 4.78i)11-s + (3.05 − 1.76i)13-s + 5.52i·17-s − 7.52·19-s + (0.635 − 0.367i)23-s + (2.23 − 3.86i)29-s + (−3.76 − 6.51i)31-s + 6.05i·37-s + (−0.527 − 0.914i)41-s + (−3.05 − 1.76i)43-s + (1.04 + 0.604i)47-s + (0.237 + 0.412i)49-s + 1.46i·53-s + (0.734 + 1.27i)59-s + ⋯ |
L(s) = 1 | + (−0.894 − 0.516i)7-s + (0.832 − 1.44i)11-s + (0.846 − 0.488i)13-s + 1.33i·17-s − 1.72·19-s + (0.132 − 0.0765i)23-s + (0.414 − 0.718i)29-s + (−0.675 − 1.17i)31-s + 0.995i·37-s + (−0.0824 − 0.142i)41-s + (−0.465 − 0.268i)43-s + (0.152 + 0.0882i)47-s + (0.0339 + 0.0588i)49-s + 0.201i·53-s + (0.0955 + 0.165i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.861 + 0.506i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.861 + 0.506i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8028665690\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8028665690\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (2.36 + 1.36i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.76 + 4.78i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.05 + 1.76i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 5.52iT - 17T^{2} \) |
| 19 | \( 1 + 7.52T + 19T^{2} \) |
| 23 | \( 1 + (-0.635 + 0.367i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.23 + 3.86i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.76 + 6.51i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6.05iT - 37T^{2} \) |
| 41 | \( 1 + (0.527 + 0.914i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.05 + 1.76i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.04 - 0.604i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 1.46iT - 53T^{2} \) |
| 59 | \( 1 + (-0.734 - 1.27i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.52 - 7.84i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.68 - 2.12i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 10.0T + 71T^{2} \) |
| 73 | \( 1 + 8iT - 73T^{2} \) |
| 79 | \( 1 + (-1 + 1.73i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.56 - 2.63i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + (8.19 + 4.73i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.534864769481352679743361342799, −7.975460953370304632971460405567, −6.74167907154912982742537766164, −6.18816575873329404489724878183, −5.80150092578306492648319840408, −4.21425764398865619060022694080, −3.78807116425407789066503341089, −2.91322694685320716698636122301, −1.49637672813476961713601589032, −0.25966647738693732126749271007,
1.53517632744931112173531969545, 2.51228158634158376264165399294, 3.56808730837991258835558516783, 4.40439213517879183285587033038, 5.21142217042885327823939538497, 6.40034516886784742036592330087, 6.68665668901677733292038890768, 7.47043830655675688927597079884, 8.703516282387343834488934857913, 9.100431218763394875954830132199