L(s) = 1 | + (1.79 + 1.79i)7-s + 0.646i·11-s + (−3.79 + 3.79i)13-s + (−4.96 + 4.96i)17-s − 6.58i·19-s + (−1.87 − 1.87i)23-s − 7.99·29-s − 0.582·31-s + (−3 − 3i)37-s − 4.25i·41-s + (0.791 − 0.791i)43-s + (1.93 − 1.93i)47-s − 0.582i·49-s + (−5.47 − 5.47i)53-s − 12.8·59-s + ⋯ |
L(s) = 1 | + (0.677 + 0.677i)7-s + 0.194i·11-s + (−1.05 + 1.05i)13-s + (−1.20 + 1.20i)17-s − 1.51i·19-s + (−0.390 − 0.390i)23-s − 1.48·29-s − 0.104·31-s + (−0.493 − 0.493i)37-s − 0.664i·41-s + (0.120 − 0.120i)43-s + (0.282 − 0.282i)47-s − 0.0832i·49-s + (−0.752 − 0.752i)53-s − 1.67·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.229i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1558457944\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1558457944\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-1.79 - 1.79i)T + 7iT^{2} \) |
| 11 | \( 1 - 0.646iT - 11T^{2} \) |
| 13 | \( 1 + (3.79 - 3.79i)T - 13iT^{2} \) |
| 17 | \( 1 + (4.96 - 4.96i)T - 17iT^{2} \) |
| 19 | \( 1 + 6.58iT - 19T^{2} \) |
| 23 | \( 1 + (1.87 + 1.87i)T + 23iT^{2} \) |
| 29 | \( 1 + 7.99T + 29T^{2} \) |
| 31 | \( 1 + 0.582T + 31T^{2} \) |
| 37 | \( 1 + (3 + 3i)T + 37iT^{2} \) |
| 41 | \( 1 + 4.25iT - 41T^{2} \) |
| 43 | \( 1 + (-0.791 + 0.791i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.93 + 1.93i)T - 47iT^{2} \) |
| 53 | \( 1 + (5.47 + 5.47i)T + 53iT^{2} \) |
| 59 | \( 1 + 12.8T + 59T^{2} \) |
| 61 | \( 1 - 6.16T + 61T^{2} \) |
| 67 | \( 1 + (-7 - 7i)T + 67iT^{2} \) |
| 71 | \( 1 + 14.3iT - 71T^{2} \) |
| 73 | \( 1 + (-1.20 + 1.20i)T - 73iT^{2} \) |
| 79 | \( 1 - 6.16iT - 79T^{2} \) |
| 83 | \( 1 + (-1.22 - 1.22i)T + 83iT^{2} \) |
| 89 | \( 1 - 9.42T + 89T^{2} \) |
| 97 | \( 1 + (7.58 + 7.58i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.031999984659882729573135360441, −8.723752147407684954269146971091, −7.69309804994885997189944499335, −6.96750765671747115776475706212, −6.26776376308000307711748440564, −5.21835777733531426113894089283, −4.62931197647700243084736442512, −3.78715873206343732224675429082, −2.28722100813272669889005517303, −1.95844297889775395239319350633,
0.04659057927145982793336365855, 1.47608738147509487381440740096, 2.58242177158613518127357205166, 3.61402540954691726899934425292, 4.54031532898446085563662013139, 5.23702046573544124443361755333, 6.05667952300360790108689412784, 7.12942874414371913195654955227, 7.68920134489268855796335723243, 8.214438745507657297060282399132