L(s) = 1 | + (1.88 − 3.26i)7-s + (−1.77 + 3.07i)11-s + (−0.501 − 0.869i)13-s − 1.56·17-s + 7.21·19-s + (3.09 + 5.35i)23-s + (−1.5 + 2.59i)29-s + (2.89 + 5.00i)31-s + 0.851·37-s + (−1.55 − 2.70i)41-s + (1.35 − 2.34i)43-s + (4.87 − 8.44i)47-s + (−3.60 − 6.24i)49-s + 11.2·53-s + (−4.83 − 8.36i)59-s + ⋯ |
L(s) = 1 | + (0.712 − 1.23i)7-s + (−0.534 + 0.925i)11-s + (−0.139 − 0.241i)13-s − 0.378·17-s + 1.65·19-s + (0.644 + 1.11i)23-s + (−0.278 + 0.482i)29-s + (0.519 + 0.899i)31-s + 0.139·37-s + (−0.243 − 0.421i)41-s + (0.206 − 0.357i)43-s + (0.710 − 1.23i)47-s + (−0.515 − 0.892i)49-s + 1.54·53-s + (−0.629 − 1.08i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.941 + 0.335i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.941 + 0.335i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.986403149\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.986403149\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-1.88 + 3.26i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.77 - 3.07i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.501 + 0.869i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 1.56T + 17T^{2} \) |
| 19 | \( 1 - 7.21T + 19T^{2} \) |
| 23 | \( 1 + (-3.09 - 5.35i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.89 - 5.00i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 0.851T + 37T^{2} \) |
| 41 | \( 1 + (1.55 + 2.70i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.35 + 2.34i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.87 + 8.44i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 11.2T + 53T^{2} \) |
| 59 | \( 1 + (4.83 + 8.36i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.10 + 7.11i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.45 - 2.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 7.21T + 71T^{2} \) |
| 73 | \( 1 - 16.7T + 73T^{2} \) |
| 79 | \( 1 + (5.49 - 9.52i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.09 + 8.82i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 5.33T + 89T^{2} \) |
| 97 | \( 1 + (-1.93 + 3.34i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.771430590943824754610095974491, −7.81597775896926414331592619076, −7.30919718728323365754068831719, −6.85587565404956699641770173386, −5.36224042208848701953241061444, −5.03226009117285559659216267086, −4.02491170338667822204277970780, −3.19000608748815382774050145517, −1.91385283016010955266811392888, −0.875242158820661463850657713978,
0.947700168423578997461150602929, 2.37433364500420721669930523325, 2.91952223428179444042190126113, 4.21261655600483082048025218352, 5.14108890136113324362531240167, 5.67866967297742533706291599638, 6.45862429720658218315355467484, 7.57278937461128077801077187913, 8.125919388889243208193785376251, 8.918448191701633499946752094735