L(s) = 1 | + (0.340 + 0.589i)7-s + (−0.840 − 1.45i)11-s + (2.57 − 4.45i)13-s − 1.31·17-s − 0.324·19-s + (−1.89 + 3.28i)23-s + (−4.32 − 7.48i)29-s + (2.07 − 3.58i)31-s − 1.35·37-s + (−3.57 + 6.19i)41-s + (−3.64 − 6.31i)43-s + (6.48 + 11.2i)47-s + (3.26 − 5.66i)49-s − 8.83·53-s + (4.40 − 7.63i)59-s + ⋯ |
L(s) = 1 | + (0.128 + 0.222i)7-s + (−0.253 − 0.438i)11-s + (0.713 − 1.23i)13-s − 0.320·17-s − 0.0744·19-s + (−0.395 + 0.684i)23-s + (−0.802 − 1.39i)29-s + (0.372 − 0.644i)31-s − 0.222·37-s + (−0.558 + 0.967i)41-s + (−0.555 − 0.962i)43-s + (0.945 + 1.63i)47-s + (0.466 − 0.808i)49-s − 1.21·53-s + (0.573 − 0.993i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.234 + 0.972i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.234 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.234373511\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.234373511\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.340 - 0.589i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.840 + 1.45i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.57 + 4.45i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 1.31T + 17T^{2} \) |
| 19 | \( 1 + 0.324T + 19T^{2} \) |
| 23 | \( 1 + (1.89 - 3.28i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.32 + 7.48i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.07 + 3.58i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 1.35T + 37T^{2} \) |
| 41 | \( 1 + (3.57 - 6.19i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.64 + 6.31i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.48 - 11.2i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 8.83T + 53T^{2} \) |
| 59 | \( 1 + (-4.40 + 7.63i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.98 + 8.63i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.08 - 3.61i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 0.891T + 71T^{2} \) |
| 73 | \( 1 - 7.82T + 73T^{2} \) |
| 79 | \( 1 + (4.82 + 8.36i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.42 + 4.20i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 17.4T + 89T^{2} \) |
| 97 | \( 1 + (-4.46 - 7.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.364068089054724299599877109925, −8.084256874623012125286406918486, −7.19387329956616588355522333925, −6.05045225412570013854515103720, −5.73820657875167720095842508258, −4.71234815778049209066645967258, −3.71521428400016916625700171820, −2.92239198765319028027625880196, −1.79663543066838015810877549354, −0.40163074616676264989797119049,
1.36587292864006128650683538780, 2.30255259313096482679343032264, 3.52999571760731213965198245145, 4.31229336303818546787397437118, 5.07793579336397721031920132231, 6.06663853269172108341987142238, 6.87389155640221616145672592181, 7.37208429196009917711949149475, 8.535297602527139546119536867704, 8.861803307951980336884145203416