L(s) = 1 | + (−0.0432 + 0.0748i)7-s + (−0.456 + 0.791i)11-s + (−1.31 − 2.27i)13-s − 2.08·17-s + 4.93·19-s + (4.23 + 7.34i)23-s + (1.19 − 2.07i)29-s + (−1.81 − 3.13i)31-s − 5.85·37-s + (3.32 + 5.75i)41-s + (4.12 − 7.14i)43-s + (1.34 − 2.32i)47-s + (3.49 + 6.05i)49-s + 5.73·53-s + (6.16 + 10.6i)59-s + ⋯ |
L(s) = 1 | + (−0.0163 + 0.0283i)7-s + (−0.137 + 0.238i)11-s + (−0.364 − 0.630i)13-s − 0.506·17-s + 1.13·19-s + (0.883 + 1.53i)23-s + (0.222 − 0.385i)29-s + (−0.325 − 0.563i)31-s − 0.962·37-s + (0.519 + 0.899i)41-s + (0.629 − 1.08i)43-s + (0.196 − 0.339i)47-s + (0.499 + 0.865i)49-s + 0.787·53-s + (0.803 + 1.39i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.204i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 - 0.204i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.737592425\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.737592425\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.0432 - 0.0748i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.456 - 0.791i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.31 + 2.27i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 2.08T + 17T^{2} \) |
| 19 | \( 1 - 4.93T + 19T^{2} \) |
| 23 | \( 1 + (-4.23 - 7.34i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.19 + 2.07i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.81 + 3.13i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 5.85T + 37T^{2} \) |
| 41 | \( 1 + (-3.32 - 5.75i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.12 + 7.14i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.34 + 2.32i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 5.73T + 53T^{2} \) |
| 59 | \( 1 + (-6.16 - 10.6i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.16 + 5.48i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.08 + 5.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 12.3T + 71T^{2} \) |
| 73 | \( 1 - 5.31T + 73T^{2} \) |
| 79 | \( 1 + (-6.72 + 11.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.03 - 5.26i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 8.13T + 89T^{2} \) |
| 97 | \( 1 + (5.55 - 9.61i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.050000590394276286213988894016, −7.922835427607513078634795481195, −7.45034225473810469631041790539, −6.68131313941734770669235831747, −5.55779626453618099204478418942, −5.17042004408751570196637298522, −4.03102390240013526566556526314, −3.16559420110965071440073391894, −2.20020630724303478741537069825, −0.883832664934550897832233393415,
0.77757473668189542093797480048, 2.14563280827196736206661053735, 3.05450807932135339451737148138, 4.07009212362923903071821828773, 4.93973611515841171227827295151, 5.62203971542636644829311432106, 6.80207295455351114580425422081, 7.04847743240483305600251438093, 8.162506997130099181092949449561, 8.829762114306482180618888465550