L(s) = 1 | + (−1.91 − 3.32i)7-s + (−0.853 − 1.47i)11-s + (1.85 − 3.21i)13-s + 1.70·17-s + 0.292·19-s + (2.91 − 5.05i)23-s + (4.33 + 7.50i)29-s + (−0.146 + 0.253i)31-s − 11.9·37-s + (−3.48 + 6.02i)41-s + (1.85 + 3.21i)43-s + (−0.936 − 1.62i)47-s + (−3.85 + 6.67i)49-s − 11.6·53-s + (5.83 − 10.1i)59-s + ⋯ |
L(s) = 1 | + (−0.724 − 1.25i)7-s + (−0.257 − 0.445i)11-s + (0.514 − 0.890i)13-s + 0.414·17-s + 0.0671·19-s + (0.608 − 1.05i)23-s + (0.804 + 1.39i)29-s + (−0.0262 + 0.0455i)31-s − 1.96·37-s + (−0.543 + 0.941i)41-s + (0.282 + 0.489i)43-s + (−0.136 − 0.236i)47-s + (−0.550 + 0.953i)49-s − 1.60·53-s + (0.759 − 1.31i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.446i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.446i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9404685984\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9404685984\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (1.91 + 3.32i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.853 + 1.47i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.85 + 3.21i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 1.70T + 17T^{2} \) |
| 19 | \( 1 - 0.292T + 19T^{2} \) |
| 23 | \( 1 + (-2.91 + 5.05i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.33 - 7.50i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.146 - 0.253i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 11.9T + 37T^{2} \) |
| 41 | \( 1 + (3.48 - 6.02i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.85 - 3.21i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.936 + 1.62i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 11.6T + 53T^{2} \) |
| 59 | \( 1 + (-5.83 + 10.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (7.48 + 12.9i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.77 + 8.26i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 15.9T + 71T^{2} \) |
| 73 | \( 1 + 8T + 73T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.91 - 10.2i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 3T + 89T^{2} \) |
| 97 | \( 1 + (1.83 + 3.17i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.402900654493627426831936337660, −7.83031144848917146501357987241, −6.83294887621530252965859309229, −6.46028528538230941270937329305, −5.34072302336934388850410287637, −4.60118666152845393341503083422, −3.34406409913096780305001313131, −3.17040527266928132929744045716, −1.39200937117684130761851785446, −0.31172008586023116237790410932,
1.57510454142084890912136261166, 2.58828000135248508157724550928, 3.43330376508048192791627583045, 4.44805834450361901602473810696, 5.46386767001783806788545456237, 5.99460877203071837859834441933, 6.87009076547302041437705171652, 7.56922939691794595197883618432, 8.730886234318462429880028989170, 8.962799179627987796671804839261