L(s) = 1 | + 4i·7-s − 6·11-s − 4i·13-s − 3i·17-s + 7·19-s + 9i·23-s − 7·31-s − 2i·37-s − 6·41-s + 2i·43-s − 9·49-s − 9i·53-s − 12·59-s − 7·61-s − 2i·67-s + ⋯ |
L(s) = 1 | + 1.51i·7-s − 1.80·11-s − 1.10i·13-s − 0.727i·17-s + 1.60·19-s + 1.87i·23-s − 1.25·31-s − 0.328i·37-s − 0.937·41-s + 0.304i·43-s − 1.28·49-s − 1.23i·53-s − 1.56·59-s − 0.896·61-s − 0.244i·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 + 6T + 11T^{2} \) |
| 13 | \( 1 + 4iT - 13T^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 19 | \( 1 - 7T + 19T^{2} \) |
| 23 | \( 1 - 9iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 7T + 31T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 2iT - 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + 9iT - 53T^{2} \) |
| 59 | \( 1 + 12T + 59T^{2} \) |
| 61 | \( 1 + 7T + 61T^{2} \) |
| 67 | \( 1 + 2iT - 67T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - 2iT - 73T^{2} \) |
| 79 | \( 1 - T + 79T^{2} \) |
| 83 | \( 1 + 9iT - 83T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.448256394453675915105094268733, −7.71787410308609866490536306678, −7.29410198358181911079706203638, −5.78790221478801988402491448720, −5.44760221716614385676235217505, −5.00431193121033736073709868254, −3.21518374093782558734163368682, −2.93551248908926758209320965442, −1.75874636376727431618080420984, 0,
1.35894413706850220747878729608, 2.60650607814006130489689815032, 3.59667474284058358323643278848, 4.47546392109458353031834745874, 5.12619567431031463841535205410, 6.17054588845563049310059357245, 7.07326090644926444111319389352, 7.56523375781758488325644225583, 8.250291085340585587247314030202