L(s) = 1 | + (1.22 − 1.22i)13-s + 2i·19-s + 31-s + (−1.22 − 1.22i)37-s + (1.22 − 1.22i)43-s − i·49-s + 2·61-s + (1.22 + 1.22i)67-s + (−1.22 + 1.22i)73-s + i·79-s + (1.22 − 1.22i)103-s + i·109-s + ⋯ |
L(s) = 1 | + (1.22 − 1.22i)13-s + 2i·19-s + 31-s + (−1.22 − 1.22i)37-s + (1.22 − 1.22i)43-s − i·49-s + 2·61-s + (1.22 + 1.22i)67-s + (−1.22 + 1.22i)73-s + i·79-s + (1.22 − 1.22i)103-s + i·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.297965813\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.297965813\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 - 2iT - T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 2T + T^{2} \) |
| 67 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 79 | \( 1 - iT - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.735977983437618039404429573394, −8.362840864048794837406988551000, −7.59441891993999056083147020372, −6.70169838625221038757568006058, −5.71740550635878477451481351510, −5.45043475070020935741113170884, −3.97102124304183498248020095326, −3.55684741305562816054161441297, −2.31955420374819433728691995132, −1.09265288240085115016260609114,
1.17284980262875254234453558967, 2.39624914230476532229902095537, 3.38036879735839884552468339775, 4.39341604966668945628835890997, 4.97837272334095820451592286171, 6.21420254874135949989538643019, 6.62433744199030889679757523491, 7.46444893417887150138404749193, 8.468310297994447927864039008316, 8.970387658313361735059413309753