Properties

Label 2-3e3-27.22-c1-0-0
Degree $2$
Conductor $27$
Sign $0.0136 - 0.999i$
Analytic cond. $0.215596$
Root an. cond. $0.464323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.62 + 1.36i)2-s + (−0.986 + 1.42i)3-s + (0.430 − 2.44i)4-s + (2.52 − 0.917i)5-s + (−0.338 − 3.65i)6-s + (0.168 + 0.957i)7-s + (0.508 + 0.880i)8-s + (−1.05 − 2.80i)9-s + (−2.83 + 4.91i)10-s + (0.297 + 0.108i)11-s + (3.05 + 3.02i)12-s + (−1.15 − 0.973i)13-s + (−1.57 − 1.32i)14-s + (−1.17 + 4.49i)15-s + (2.63 + 0.960i)16-s + (−0.587 + 1.01i)17-s + ⋯
L(s)  = 1  + (−1.14 + 0.962i)2-s + (−0.569 + 0.822i)3-s + (0.215 − 1.22i)4-s + (1.12 − 0.410i)5-s + (−0.138 − 1.49i)6-s + (0.0638 + 0.361i)7-s + (0.179 + 0.311i)8-s + (−0.351 − 0.936i)9-s + (−0.897 + 1.55i)10-s + (0.0897 + 0.0326i)11-s + (0.881 + 0.872i)12-s + (−0.321 − 0.269i)13-s + (−0.421 − 0.353i)14-s + (−0.304 + 1.16i)15-s + (0.659 + 0.240i)16-s + (−0.142 + 0.246i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0136 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0136 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $0.0136 - 0.999i$
Analytic conductor: \(0.215596\)
Root analytic conductor: \(0.464323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :1/2),\ 0.0136 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.290032 + 0.286089i\)
\(L(\frac12)\) \(\approx\) \(0.290032 + 0.286089i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.986 - 1.42i)T \)
good2 \( 1 + (1.62 - 1.36i)T + (0.347 - 1.96i)T^{2} \)
5 \( 1 + (-2.52 + 0.917i)T + (3.83 - 3.21i)T^{2} \)
7 \( 1 + (-0.168 - 0.957i)T + (-6.57 + 2.39i)T^{2} \)
11 \( 1 + (-0.297 - 0.108i)T + (8.42 + 7.07i)T^{2} \)
13 \( 1 + (1.15 + 0.973i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (0.587 - 1.01i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (3.11 + 5.38i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.375 + 2.12i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (3.37 - 2.83i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (1.50 - 8.54i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (-2.23 + 3.86i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-4.47 - 3.75i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (5.25 + 1.91i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (0.429 + 2.43i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + 10.8T + 53T^{2} \)
59 \( 1 + (-1.62 + 0.589i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (-0.176 - 0.999i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-0.656 - 0.550i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (-4.79 + 8.31i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-7.62 - 13.1i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (8.59 - 7.20i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (-3.58 + 3.01i)T + (14.4 - 81.7i)T^{2} \)
89 \( 1 + (-7.74 - 13.4i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-5.21 - 1.89i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.46211532348221847348801431882, −16.77872370909022347335659810044, −15.69052381387282704267491922739, −14.63844241134237268771684156370, −12.71589541767922192295071025251, −10.74006234828547294047579888166, −9.556802985926483511356063025760, −8.754202135360183087992135881480, −6.60196378716140662785480752167, −5.30484352418663340812393184995, 2.02740572721175555232292198423, 6.04151511889640557530896434076, 7.78821171040463074569630825045, 9.551495980560636820671011895862, 10.60537146449475110024889059829, 11.70509465615510580674447160630, 13.07191318494187141752652377171, 14.34164920302392859617651024559, 16.85653595453129799690413926291, 17.38063797029706303578249134540

Graph of the $Z$-function along the critical line