Properties

Label 2-3e3-3.2-c14-0-2
Degree $2$
Conductor $27$
Sign $-1$
Analytic cond. $33.5688$
Root an. cond. $5.79386$
Motivic weight $14$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 70.1i·2-s + 1.14e4·4-s + 9.60e4i·5-s − 2.29e5·7-s + 1.95e6i·8-s − 6.73e6·10-s + 1.06e7i·11-s − 3.57e7·13-s − 1.60e7i·14-s + 5.06e7·16-s − 1.55e8i·17-s + 5.06e8·19-s + 1.10e9i·20-s − 7.48e8·22-s + 5.97e9i·23-s + ⋯
L(s)  = 1  + 0.548i·2-s + 0.699·4-s + 1.22i·5-s − 0.278·7-s + 0.931i·8-s − 0.673·10-s + 0.547i·11-s − 0.570·13-s − 0.152i·14-s + 0.188·16-s − 0.379i·17-s + 0.566·19-s + 0.859i·20-s − 0.300·22-s + 1.75i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+7) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $-1$
Analytic conductor: \(33.5688\)
Root analytic conductor: \(5.79386\)
Motivic weight: \(14\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :7),\ -1)\)

Particular Values

\(L(\frac{15}{2})\) \(\approx\) \(1.649923854\)
\(L(\frac12)\) \(\approx\) \(1.649923854\)
\(L(8)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 70.1iT - 1.63e4T^{2} \)
5 \( 1 - 9.60e4iT - 6.10e9T^{2} \)
7 \( 1 + 2.29e5T + 6.78e11T^{2} \)
11 \( 1 - 1.06e7iT - 3.79e14T^{2} \)
13 \( 1 + 3.57e7T + 3.93e15T^{2} \)
17 \( 1 + 1.55e8iT - 1.68e17T^{2} \)
19 \( 1 - 5.06e8T + 7.99e17T^{2} \)
23 \( 1 - 5.97e9iT - 1.15e19T^{2} \)
29 \( 1 + 1.99e10iT - 2.97e20T^{2} \)
31 \( 1 + 4.17e10T + 7.56e20T^{2} \)
37 \( 1 + 3.21e10T + 9.01e21T^{2} \)
41 \( 1 + 3.07e11iT - 3.79e22T^{2} \)
43 \( 1 + 4.40e11T + 7.38e22T^{2} \)
47 \( 1 + 5.56e10iT - 2.56e23T^{2} \)
53 \( 1 - 2.05e12iT - 1.37e24T^{2} \)
59 \( 1 - 1.68e12iT - 6.19e24T^{2} \)
61 \( 1 + 1.40e12T + 9.87e24T^{2} \)
67 \( 1 - 3.62e12T + 3.67e25T^{2} \)
71 \( 1 - 7.21e12iT - 8.27e25T^{2} \)
73 \( 1 - 1.62e13T + 1.22e26T^{2} \)
79 \( 1 - 1.84e13T + 3.68e26T^{2} \)
83 \( 1 + 2.17e13iT - 7.36e26T^{2} \)
89 \( 1 - 5.27e13iT - 1.95e27T^{2} \)
97 \( 1 + 1.06e14T + 6.52e27T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.94832684559542690694492809763, −13.82642662643173047311687071596, −12.00165370381648175085803198408, −10.94365085419759278779864886925, −9.674218244256886003108810796880, −7.57052957276382955578116273899, −6.90363132603266501546393967507, −5.52329553186400640106126602255, −3.29518960340929097363840867223, −2.03523267117628102918366145156, 0.45618296817073361982064137311, 1.72324537101499645735644323422, 3.31964935216139471836199231909, 5.02349429110505446761466380083, 6.64101169731220395374741062366, 8.314653869722091109380520577017, 9.673330935928662647405118253912, 11.01666139526510849966085045511, 12.31473753183630238276900544086, 12.97932168067799029842505377186

Graph of the $Z$-function along the critical line