Properties

Label 2-3e3-1.1-c11-0-3
Degree $2$
Conductor $27$
Sign $1$
Analytic cond. $20.7452$
Root an. cond. $4.55469$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.35·2-s − 2.01e3·4-s + 1.28e4·5-s − 3.17e4·7-s + 2.17e4·8-s − 6.87e4·10-s − 6.84e5·11-s + 9.86e5·13-s + 1.69e5·14-s + 4.01e6·16-s + 8.95e6·17-s − 3.35e6·19-s − 2.59e7·20-s + 3.66e6·22-s + 1.07e7·23-s + 1.16e8·25-s − 5.27e6·26-s + 6.40e7·28-s + 1.55e8·29-s + 2.24e8·31-s − 6.60e7·32-s − 4.79e7·34-s − 4.07e8·35-s + 2.97e8·37-s + 1.79e7·38-s + 2.79e8·40-s + 3.67e8·41-s + ⋯
L(s)  = 1  − 0.118·2-s − 0.986·4-s + 1.83·5-s − 0.713·7-s + 0.234·8-s − 0.217·10-s − 1.28·11-s + 0.736·13-s + 0.0844·14-s + 0.958·16-s + 1.53·17-s − 0.310·19-s − 1.81·20-s + 0.151·22-s + 0.347·23-s + 2.37·25-s − 0.0871·26-s + 0.703·28-s + 1.40·29-s + 1.40·31-s − 0.348·32-s − 0.180·34-s − 1.31·35-s + 0.705·37-s + 0.0367·38-s + 0.431·40-s + 0.494·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $1$
Analytic conductor: \(20.7452\)
Root analytic conductor: \(4.55469\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(1.843114736\)
\(L(\frac12)\) \(\approx\) \(1.843114736\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 5.35T + 2.04e3T^{2} \)
5 \( 1 - 1.28e4T + 4.88e7T^{2} \)
7 \( 1 + 3.17e4T + 1.97e9T^{2} \)
11 \( 1 + 6.84e5T + 2.85e11T^{2} \)
13 \( 1 - 9.86e5T + 1.79e12T^{2} \)
17 \( 1 - 8.95e6T + 3.42e13T^{2} \)
19 \( 1 + 3.35e6T + 1.16e14T^{2} \)
23 \( 1 - 1.07e7T + 9.52e14T^{2} \)
29 \( 1 - 1.55e8T + 1.22e16T^{2} \)
31 \( 1 - 2.24e8T + 2.54e16T^{2} \)
37 \( 1 - 2.97e8T + 1.77e17T^{2} \)
41 \( 1 - 3.67e8T + 5.50e17T^{2} \)
43 \( 1 + 2.37e8T + 9.29e17T^{2} \)
47 \( 1 + 1.81e9T + 2.47e18T^{2} \)
53 \( 1 + 2.49e8T + 9.26e18T^{2} \)
59 \( 1 - 5.25e9T + 3.01e19T^{2} \)
61 \( 1 - 3.90e9T + 4.35e19T^{2} \)
67 \( 1 - 1.59e10T + 1.22e20T^{2} \)
71 \( 1 + 1.95e10T + 2.31e20T^{2} \)
73 \( 1 + 9.74e9T + 3.13e20T^{2} \)
79 \( 1 - 2.34e10T + 7.47e20T^{2} \)
83 \( 1 + 3.63e10T + 1.28e21T^{2} \)
89 \( 1 + 1.64e10T + 2.77e21T^{2} \)
97 \( 1 - 2.75e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.38405473958341063448838772395, −13.43120580030850110149395658513, −12.80232763869813051607130320574, −10.26324127072240721683429364058, −9.768754067030390856375991817041, −8.354110084275208032013223108904, −6.18069329241396162096689526656, −5.11398595726919526980996532057, −2.89481837802962152342669952903, −1.00732906819633023293780544539, 1.00732906819633023293780544539, 2.89481837802962152342669952903, 5.11398595726919526980996532057, 6.18069329241396162096689526656, 8.354110084275208032013223108904, 9.768754067030390856375991817041, 10.26324127072240721683429364058, 12.80232763869813051607130320574, 13.43120580030850110149395658513, 14.38405473958341063448838772395

Graph of the $Z$-function along the critical line