Properties

Label 2-2667-1.1-c1-0-46
Degree $2$
Conductor $2667$
Sign $1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.94·2-s + 3-s + 1.77·4-s + 3.66·5-s − 1.94·6-s + 7-s + 0.445·8-s + 9-s − 7.11·10-s + 2.76·11-s + 1.77·12-s − 3.90·13-s − 1.94·14-s + 3.66·15-s − 4.40·16-s + 3.65·17-s − 1.94·18-s − 2.93·19-s + 6.49·20-s + 21-s − 5.36·22-s − 5.90·23-s + 0.445·24-s + 8.44·25-s + 7.57·26-s + 27-s + 1.77·28-s + ⋯
L(s)  = 1  − 1.37·2-s + 0.577·3-s + 0.885·4-s + 1.63·5-s − 0.792·6-s + 0.377·7-s + 0.157·8-s + 0.333·9-s − 2.25·10-s + 0.833·11-s + 0.511·12-s − 1.08·13-s − 0.518·14-s + 0.946·15-s − 1.10·16-s + 0.886·17-s − 0.457·18-s − 0.673·19-s + 1.45·20-s + 0.218·21-s − 1.14·22-s − 1.23·23-s + 0.0909·24-s + 1.68·25-s + 1.48·26-s + 0.192·27-s + 0.334·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.658333257\)
\(L(\frac12)\) \(\approx\) \(1.658333257\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 - T \)
127 \( 1 - T \)
good2 \( 1 + 1.94T + 2T^{2} \)
5 \( 1 - 3.66T + 5T^{2} \)
11 \( 1 - 2.76T + 11T^{2} \)
13 \( 1 + 3.90T + 13T^{2} \)
17 \( 1 - 3.65T + 17T^{2} \)
19 \( 1 + 2.93T + 19T^{2} \)
23 \( 1 + 5.90T + 23T^{2} \)
29 \( 1 - 1.00T + 29T^{2} \)
31 \( 1 + 0.885T + 31T^{2} \)
37 \( 1 - 5.97T + 37T^{2} \)
41 \( 1 - 7.04T + 41T^{2} \)
43 \( 1 - 5.95T + 43T^{2} \)
47 \( 1 + 5.51T + 47T^{2} \)
53 \( 1 - 4.27T + 53T^{2} \)
59 \( 1 + 7.36T + 59T^{2} \)
61 \( 1 - 11.9T + 61T^{2} \)
67 \( 1 - 8.14T + 67T^{2} \)
71 \( 1 - 4.06T + 71T^{2} \)
73 \( 1 - 1.01T + 73T^{2} \)
79 \( 1 - 1.03T + 79T^{2} \)
83 \( 1 - 3.97T + 83T^{2} \)
89 \( 1 - 10.8T + 89T^{2} \)
97 \( 1 - 13.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.146991980132209656042506457977, −8.185733634805425216259533516960, −7.64412600356226625902193621702, −6.72458533232702536920123632722, −6.01858720460623251053275636126, −5.02500502677177488550217051099, −4.04003608778331298892364885994, −2.49074495906586659618172567654, −1.98882658606298297176312518928, −1.02594787257228366011201918454, 1.02594787257228366011201918454, 1.98882658606298297176312518928, 2.49074495906586659618172567654, 4.04003608778331298892364885994, 5.02500502677177488550217051099, 6.01858720460623251053275636126, 6.72458533232702536920123632722, 7.64412600356226625902193621702, 8.185733634805425216259533516960, 9.146991980132209656042506457977

Graph of the $Z$-function along the critical line