L(s) = 1 | + 0.395·2-s + 3-s − 1.84·4-s + 1.95·5-s + 0.395·6-s + 7-s − 1.52·8-s + 9-s + 0.772·10-s − 5.34·11-s − 1.84·12-s + 6.49·13-s + 0.395·14-s + 1.95·15-s + 3.08·16-s + 7.92·17-s + 0.395·18-s − 5.50·19-s − 3.59·20-s + 21-s − 2.11·22-s − 3.09·23-s − 1.52·24-s − 1.18·25-s + 2.56·26-s + 27-s − 1.84·28-s + ⋯ |
L(s) = 1 | + 0.279·2-s + 0.577·3-s − 0.921·4-s + 0.873·5-s + 0.161·6-s + 0.377·7-s − 0.537·8-s + 0.333·9-s + 0.244·10-s − 1.61·11-s − 0.532·12-s + 1.80·13-s + 0.105·14-s + 0.504·15-s + 0.771·16-s + 1.92·17-s + 0.0932·18-s − 1.26·19-s − 0.804·20-s + 0.218·21-s − 0.450·22-s − 0.646·23-s − 0.310·24-s − 0.237·25-s + 0.503·26-s + 0.192·27-s − 0.348·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.576689080\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.576689080\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 7 | \( 1 - T \) |
| 127 | \( 1 - T \) |
good | 2 | \( 1 - 0.395T + 2T^{2} \) |
| 5 | \( 1 - 1.95T + 5T^{2} \) |
| 11 | \( 1 + 5.34T + 11T^{2} \) |
| 13 | \( 1 - 6.49T + 13T^{2} \) |
| 17 | \( 1 - 7.92T + 17T^{2} \) |
| 19 | \( 1 + 5.50T + 19T^{2} \) |
| 23 | \( 1 + 3.09T + 23T^{2} \) |
| 29 | \( 1 + 3.39T + 29T^{2} \) |
| 31 | \( 1 - 10.2T + 31T^{2} \) |
| 37 | \( 1 - 7.25T + 37T^{2} \) |
| 41 | \( 1 + 10.1T + 41T^{2} \) |
| 43 | \( 1 - 12.7T + 43T^{2} \) |
| 47 | \( 1 + 1.66T + 47T^{2} \) |
| 53 | \( 1 - 9.51T + 53T^{2} \) |
| 59 | \( 1 + 5.51T + 59T^{2} \) |
| 61 | \( 1 - 0.0570T + 61T^{2} \) |
| 67 | \( 1 + 10.0T + 67T^{2} \) |
| 71 | \( 1 - 7.73T + 71T^{2} \) |
| 73 | \( 1 - 1.79T + 73T^{2} \) |
| 79 | \( 1 - 1.81T + 79T^{2} \) |
| 83 | \( 1 - 6.90T + 83T^{2} \) |
| 89 | \( 1 - 17.5T + 89T^{2} \) |
| 97 | \( 1 - 4.44T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.736834486715384190469967039670, −8.115276633374848039687681903327, −7.75543440898274329681013460145, −6.12376881378504772443887134031, −5.82784448268836254717903776595, −4.94960967052876943969723644466, −4.03564507782531565260134660656, −3.22163143254932506652002561737, −2.21453117660628056983816305003, −0.992112357710300089760527685805,
0.992112357710300089760527685805, 2.21453117660628056983816305003, 3.22163143254932506652002561737, 4.03564507782531565260134660656, 4.94960967052876943969723644466, 5.82784448268836254717903776595, 6.12376881378504772443887134031, 7.75543440898274329681013460145, 8.115276633374848039687681903327, 8.736834486715384190469967039670