Properties

Label 2-2667-1.1-c1-0-68
Degree $2$
Conductor $2667$
Sign $-1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.59·2-s − 3-s + 4.73·4-s − 1.63·5-s + 2.59·6-s + 7-s − 7.11·8-s + 9-s + 4.23·10-s + 4.79·11-s − 4.73·12-s + 0.263·13-s − 2.59·14-s + 1.63·15-s + 8.98·16-s − 5.12·17-s − 2.59·18-s + 5.93·19-s − 7.73·20-s − 21-s − 12.4·22-s − 4.10·23-s + 7.11·24-s − 2.33·25-s − 0.684·26-s − 27-s + 4.73·28-s + ⋯
L(s)  = 1  − 1.83·2-s − 0.577·3-s + 2.36·4-s − 0.730·5-s + 1.05·6-s + 0.377·7-s − 2.51·8-s + 0.333·9-s + 1.34·10-s + 1.44·11-s − 1.36·12-s + 0.0731·13-s − 0.693·14-s + 0.421·15-s + 2.24·16-s − 1.24·17-s − 0.611·18-s + 1.36·19-s − 1.72·20-s − 0.218·21-s − 2.65·22-s − 0.855·23-s + 1.45·24-s − 0.467·25-s − 0.134·26-s − 0.192·27-s + 0.895·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $-1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
127 \( 1 - T \)
good2 \( 1 + 2.59T + 2T^{2} \)
5 \( 1 + 1.63T + 5T^{2} \)
11 \( 1 - 4.79T + 11T^{2} \)
13 \( 1 - 0.263T + 13T^{2} \)
17 \( 1 + 5.12T + 17T^{2} \)
19 \( 1 - 5.93T + 19T^{2} \)
23 \( 1 + 4.10T + 23T^{2} \)
29 \( 1 - 0.459T + 29T^{2} \)
31 \( 1 + 9.24T + 31T^{2} \)
37 \( 1 - 6.64T + 37T^{2} \)
41 \( 1 + 3.43T + 41T^{2} \)
43 \( 1 - 2.33T + 43T^{2} \)
47 \( 1 + 5.69T + 47T^{2} \)
53 \( 1 - 2.55T + 53T^{2} \)
59 \( 1 + 13.3T + 59T^{2} \)
61 \( 1 - 10.9T + 61T^{2} \)
67 \( 1 - 1.34T + 67T^{2} \)
71 \( 1 - 5.05T + 71T^{2} \)
73 \( 1 + 16.4T + 73T^{2} \)
79 \( 1 + 0.111T + 79T^{2} \)
83 \( 1 - 6.65T + 83T^{2} \)
89 \( 1 - 11.2T + 89T^{2} \)
97 \( 1 + 5.51T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.523564191631556482262855701639, −7.78267069471092795811538652296, −7.18905123709636673843362451129, −6.53009813169340474051049480848, −5.73341648011973911499580796106, −4.41481029934619132925097402833, −3.50596462357727419584450694618, −2.05378133306747786476582478924, −1.18485713307862395004252992652, 0, 1.18485713307862395004252992652, 2.05378133306747786476582478924, 3.50596462357727419584450694618, 4.41481029934619132925097402833, 5.73341648011973911499580796106, 6.53009813169340474051049480848, 7.18905123709636673843362451129, 7.78267069471092795811538652296, 8.523564191631556482262855701639

Graph of the $Z$-function along the critical line