Properties

Label 2-2667-1.1-c1-0-115
Degree $2$
Conductor $2667$
Sign $-1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.70·2-s − 3-s + 0.914·4-s + 1.08·5-s − 1.70·6-s + 7-s − 1.85·8-s + 9-s + 1.85·10-s + 1.58·11-s − 0.914·12-s − 5.55·13-s + 1.70·14-s − 1.08·15-s − 4.99·16-s − 3.38·17-s + 1.70·18-s − 4.84·19-s + 0.994·20-s − 21-s + 2.69·22-s + 7.35·23-s + 1.85·24-s − 3.81·25-s − 9.48·26-s − 27-s + 0.914·28-s + ⋯
L(s)  = 1  + 1.20·2-s − 0.577·3-s + 0.457·4-s + 0.486·5-s − 0.696·6-s + 0.377·7-s − 0.655·8-s + 0.333·9-s + 0.586·10-s + 0.476·11-s − 0.264·12-s − 1.54·13-s + 0.456·14-s − 0.280·15-s − 1.24·16-s − 0.820·17-s + 0.402·18-s − 1.11·19-s + 0.222·20-s − 0.218·21-s + 0.575·22-s + 1.53·23-s + 0.378·24-s − 0.763·25-s − 1.86·26-s − 0.192·27-s + 0.172·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $-1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
127 \( 1 - T \)
good2 \( 1 - 1.70T + 2T^{2} \)
5 \( 1 - 1.08T + 5T^{2} \)
11 \( 1 - 1.58T + 11T^{2} \)
13 \( 1 + 5.55T + 13T^{2} \)
17 \( 1 + 3.38T + 17T^{2} \)
19 \( 1 + 4.84T + 19T^{2} \)
23 \( 1 - 7.35T + 23T^{2} \)
29 \( 1 - 4.01T + 29T^{2} \)
31 \( 1 + 8.96T + 31T^{2} \)
37 \( 1 + 3.94T + 37T^{2} \)
41 \( 1 - 6.40T + 41T^{2} \)
43 \( 1 + 8.32T + 43T^{2} \)
47 \( 1 + 2.82T + 47T^{2} \)
53 \( 1 + 2.86T + 53T^{2} \)
59 \( 1 + 3.19T + 59T^{2} \)
61 \( 1 - 15.1T + 61T^{2} \)
67 \( 1 + 14.4T + 67T^{2} \)
71 \( 1 - 4.60T + 71T^{2} \)
73 \( 1 + 11.4T + 73T^{2} \)
79 \( 1 - 5.60T + 79T^{2} \)
83 \( 1 + 6.19T + 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 + 4.99T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.610613531234914416054330857194, −7.30808331877785910962883951700, −6.73445630021216794639886157800, −5.97782727386622296268829113055, −5.14419454302676225091142268002, −4.71299025550372585868335574914, −3.91599838831241861929857512756, −2.74247301364804884340648600727, −1.84044793250717650033417145737, 0, 1.84044793250717650033417145737, 2.74247301364804884340648600727, 3.91599838831241861929857512756, 4.71299025550372585868335574914, 5.14419454302676225091142268002, 5.97782727386622296268829113055, 6.73445630021216794639886157800, 7.30808331877785910962883951700, 8.610613531234914416054330857194

Graph of the $Z$-function along the critical line