Properties

Label 2-2667-1.1-c1-0-1
Degree $2$
Conductor $2667$
Sign $1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.04·2-s − 3-s + 2.18·4-s − 2.05·5-s + 2.04·6-s − 7-s − 0.385·8-s + 9-s + 4.20·10-s + 0.528·11-s − 2.18·12-s − 2.96·13-s + 2.04·14-s + 2.05·15-s − 3.58·16-s − 5.27·17-s − 2.04·18-s − 4.01·19-s − 4.49·20-s + 21-s − 1.08·22-s + 7.89·23-s + 0.385·24-s − 0.772·25-s + 6.06·26-s − 27-s − 2.18·28-s + ⋯
L(s)  = 1  − 1.44·2-s − 0.577·3-s + 1.09·4-s − 0.919·5-s + 0.835·6-s − 0.377·7-s − 0.136·8-s + 0.333·9-s + 1.33·10-s + 0.159·11-s − 0.631·12-s − 0.821·13-s + 0.546·14-s + 0.530·15-s − 0.896·16-s − 1.28·17-s − 0.482·18-s − 0.920·19-s − 1.00·20-s + 0.218·21-s − 0.230·22-s + 1.64·23-s + 0.0787·24-s − 0.154·25-s + 1.18·26-s − 0.192·27-s − 0.413·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1847738540\)
\(L(\frac12)\) \(\approx\) \(0.1847738540\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
127 \( 1 - T \)
good2 \( 1 + 2.04T + 2T^{2} \)
5 \( 1 + 2.05T + 5T^{2} \)
11 \( 1 - 0.528T + 11T^{2} \)
13 \( 1 + 2.96T + 13T^{2} \)
17 \( 1 + 5.27T + 17T^{2} \)
19 \( 1 + 4.01T + 19T^{2} \)
23 \( 1 - 7.89T + 23T^{2} \)
29 \( 1 - 1.95T + 29T^{2} \)
31 \( 1 + 4.78T + 31T^{2} \)
37 \( 1 + 1.17T + 37T^{2} \)
41 \( 1 + 4.96T + 41T^{2} \)
43 \( 1 - 3.63T + 43T^{2} \)
47 \( 1 - 2.64T + 47T^{2} \)
53 \( 1 + 2.95T + 53T^{2} \)
59 \( 1 + 1.25T + 59T^{2} \)
61 \( 1 + 12.6T + 61T^{2} \)
67 \( 1 + 12.0T + 67T^{2} \)
71 \( 1 - 0.487T + 71T^{2} \)
73 \( 1 + 7.46T + 73T^{2} \)
79 \( 1 + 7.25T + 79T^{2} \)
83 \( 1 + 5.81T + 83T^{2} \)
89 \( 1 + 7.38T + 89T^{2} \)
97 \( 1 - 18.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.934549008511456466963543223528, −8.219200790270107019026982655087, −7.21277026102885864606321811750, −7.06549581281936499169455689075, −6.07805809871324369382759970614, −4.78984235753684344039614902175, −4.22920541626436148555061065031, −2.89634494281901919655423678217, −1.71588949444512897369433918986, −0.33891506198028335854019314987, 0.33891506198028335854019314987, 1.71588949444512897369433918986, 2.89634494281901919655423678217, 4.22920541626436148555061065031, 4.78984235753684344039614902175, 6.07805809871324369382759970614, 7.06549581281936499169455689075, 7.21277026102885864606321811750, 8.219200790270107019026982655087, 8.934549008511456466963543223528

Graph of the $Z$-function along the critical line