Properties

Label 2-2667-1.1-c1-0-52
Degree $2$
Conductor $2667$
Sign $1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.68·2-s − 3-s + 0.855·4-s + 2.75·5-s − 1.68·6-s − 7-s − 1.93·8-s + 9-s + 4.65·10-s + 3.55·11-s − 0.855·12-s + 4.67·13-s − 1.68·14-s − 2.75·15-s − 4.97·16-s + 4.02·17-s + 1.68·18-s − 1.08·19-s + 2.35·20-s + 21-s + 6.00·22-s − 7.04·23-s + 1.93·24-s + 2.58·25-s + 7.89·26-s − 27-s − 0.855·28-s + ⋯
L(s)  = 1  + 1.19·2-s − 0.577·3-s + 0.427·4-s + 1.23·5-s − 0.689·6-s − 0.377·7-s − 0.683·8-s + 0.333·9-s + 1.47·10-s + 1.07·11-s − 0.246·12-s + 1.29·13-s − 0.451·14-s − 0.710·15-s − 1.24·16-s + 0.977·17-s + 0.398·18-s − 0.249·19-s + 0.526·20-s + 0.218·21-s + 1.28·22-s − 1.46·23-s + 0.394·24-s + 0.516·25-s + 1.54·26-s − 0.192·27-s − 0.161·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.500804970\)
\(L(\frac12)\) \(\approx\) \(3.500804970\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
127 \( 1 - T \)
good2 \( 1 - 1.68T + 2T^{2} \)
5 \( 1 - 2.75T + 5T^{2} \)
11 \( 1 - 3.55T + 11T^{2} \)
13 \( 1 - 4.67T + 13T^{2} \)
17 \( 1 - 4.02T + 17T^{2} \)
19 \( 1 + 1.08T + 19T^{2} \)
23 \( 1 + 7.04T + 23T^{2} \)
29 \( 1 - 9.79T + 29T^{2} \)
31 \( 1 + 2.65T + 31T^{2} \)
37 \( 1 - 10.4T + 37T^{2} \)
41 \( 1 + 9.96T + 41T^{2} \)
43 \( 1 + 6.65T + 43T^{2} \)
47 \( 1 - 6.75T + 47T^{2} \)
53 \( 1 + 3.41T + 53T^{2} \)
59 \( 1 - 8.15T + 59T^{2} \)
61 \( 1 - 15.2T + 61T^{2} \)
67 \( 1 + 10.7T + 67T^{2} \)
71 \( 1 - 5.93T + 71T^{2} \)
73 \( 1 - 8.88T + 73T^{2} \)
79 \( 1 - 10.1T + 79T^{2} \)
83 \( 1 - 12.6T + 83T^{2} \)
89 \( 1 + 6.83T + 89T^{2} \)
97 \( 1 - 13.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.945217607892365564769305440400, −8.152309536381797472210411562478, −6.62066431451295229142899326632, −6.35442549380062158545304457075, −5.79106631687424617302867919414, −5.08202395378065200425787355676, −4.05271795927969010147581203003, −3.48153763859176648547309181055, −2.25176419192868796334754333185, −1.08513207198477551738255770237, 1.08513207198477551738255770237, 2.25176419192868796334754333185, 3.48153763859176648547309181055, 4.05271795927969010147581203003, 5.08202395378065200425787355676, 5.79106631687424617302867919414, 6.35442549380062158545304457075, 6.62066431451295229142899326632, 8.152309536381797472210411562478, 8.945217607892365564769305440400

Graph of the $Z$-function along the critical line