Properties

Label 2-2667-1.1-c1-0-22
Degree $2$
Conductor $2667$
Sign $1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.09·2-s − 3-s − 0.804·4-s + 1.42·5-s − 1.09·6-s − 7-s − 3.06·8-s + 9-s + 1.55·10-s − 4.17·11-s + 0.804·12-s + 4.20·13-s − 1.09·14-s − 1.42·15-s − 1.74·16-s + 5.66·17-s + 1.09·18-s + 1.69·19-s − 1.14·20-s + 21-s − 4.56·22-s − 0.943·23-s + 3.06·24-s − 2.97·25-s + 4.59·26-s − 27-s + 0.804·28-s + ⋯
L(s)  = 1  + 0.773·2-s − 0.577·3-s − 0.402·4-s + 0.636·5-s − 0.446·6-s − 0.377·7-s − 1.08·8-s + 0.333·9-s + 0.491·10-s − 1.25·11-s + 0.232·12-s + 1.16·13-s − 0.292·14-s − 0.367·15-s − 0.436·16-s + 1.37·17-s + 0.257·18-s + 0.389·19-s − 0.255·20-s + 0.218·21-s − 0.973·22-s − 0.196·23-s + 0.625·24-s − 0.595·25-s + 0.901·26-s − 0.192·27-s + 0.151·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.771457864\)
\(L(\frac12)\) \(\approx\) \(1.771457864\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
127 \( 1 - T \)
good2 \( 1 - 1.09T + 2T^{2} \)
5 \( 1 - 1.42T + 5T^{2} \)
11 \( 1 + 4.17T + 11T^{2} \)
13 \( 1 - 4.20T + 13T^{2} \)
17 \( 1 - 5.66T + 17T^{2} \)
19 \( 1 - 1.69T + 19T^{2} \)
23 \( 1 + 0.943T + 23T^{2} \)
29 \( 1 + 7.23T + 29T^{2} \)
31 \( 1 + 3.64T + 31T^{2} \)
37 \( 1 + 3.63T + 37T^{2} \)
41 \( 1 - 11.0T + 41T^{2} \)
43 \( 1 - 5.58T + 43T^{2} \)
47 \( 1 - 8.66T + 47T^{2} \)
53 \( 1 - 6.51T + 53T^{2} \)
59 \( 1 - 3.57T + 59T^{2} \)
61 \( 1 - 7.68T + 61T^{2} \)
67 \( 1 - 7.65T + 67T^{2} \)
71 \( 1 + 6.76T + 71T^{2} \)
73 \( 1 + 5.73T + 73T^{2} \)
79 \( 1 - 15.2T + 79T^{2} \)
83 \( 1 + 0.799T + 83T^{2} \)
89 \( 1 - 16.6T + 89T^{2} \)
97 \( 1 + 4.78T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.023697863219040026177899224539, −7.987787631170951338834577786278, −7.27174052369326414709041686498, −6.00341895260300120287662930905, −5.70713101011616907780533016423, −5.24241926039807102068230837833, −4.02709282693416659379778492500, −3.42316744316547557838073590112, −2.27843833669014825243969308217, −0.76268787514968296276467914431, 0.76268787514968296276467914431, 2.27843833669014825243969308217, 3.42316744316547557838073590112, 4.02709282693416659379778492500, 5.24241926039807102068230837833, 5.70713101011616907780533016423, 6.00341895260300120287662930905, 7.27174052369326414709041686498, 7.987787631170951338834577786278, 9.023697863219040026177899224539

Graph of the $Z$-function along the critical line