L(s) = 1 | + 0.910·2-s + 3-s − 1.17·4-s + 2.84·5-s + 0.910·6-s − 7-s − 2.88·8-s + 9-s + 2.59·10-s − 1.86·11-s − 1.17·12-s − 6.19·13-s − 0.910·14-s + 2.84·15-s − 0.283·16-s + 2.49·17-s + 0.910·18-s − 6.22·19-s − 3.33·20-s − 21-s − 1.69·22-s − 5.12·23-s − 2.88·24-s + 3.11·25-s − 5.63·26-s + 27-s + 1.17·28-s + ⋯ |
L(s) = 1 | + 0.643·2-s + 0.577·3-s − 0.585·4-s + 1.27·5-s + 0.371·6-s − 0.377·7-s − 1.02·8-s + 0.333·9-s + 0.819·10-s − 0.562·11-s − 0.338·12-s − 1.71·13-s − 0.243·14-s + 0.735·15-s − 0.0707·16-s + 0.605·17-s + 0.214·18-s − 1.42·19-s − 0.746·20-s − 0.218·21-s − 0.361·22-s − 1.06·23-s − 0.589·24-s + 0.623·25-s − 1.10·26-s + 0.192·27-s + 0.221·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 127 | \( 1 - T \) |
good | 2 | \( 1 - 0.910T + 2T^{2} \) |
| 5 | \( 1 - 2.84T + 5T^{2} \) |
| 11 | \( 1 + 1.86T + 11T^{2} \) |
| 13 | \( 1 + 6.19T + 13T^{2} \) |
| 17 | \( 1 - 2.49T + 17T^{2} \) |
| 19 | \( 1 + 6.22T + 19T^{2} \) |
| 23 | \( 1 + 5.12T + 23T^{2} \) |
| 29 | \( 1 + 7.68T + 29T^{2} \) |
| 31 | \( 1 - 4.32T + 31T^{2} \) |
| 37 | \( 1 - 2.90T + 37T^{2} \) |
| 41 | \( 1 - 4.60T + 41T^{2} \) |
| 43 | \( 1 + 9.98T + 43T^{2} \) |
| 47 | \( 1 + 10.9T + 47T^{2} \) |
| 53 | \( 1 + 10.7T + 53T^{2} \) |
| 59 | \( 1 - 11.4T + 59T^{2} \) |
| 61 | \( 1 - 1.39T + 61T^{2} \) |
| 67 | \( 1 - 14.3T + 67T^{2} \) |
| 71 | \( 1 - 9.49T + 71T^{2} \) |
| 73 | \( 1 + 16.1T + 73T^{2} \) |
| 79 | \( 1 - 12.5T + 79T^{2} \) |
| 83 | \( 1 + 6.86T + 83T^{2} \) |
| 89 | \( 1 + 8.88T + 89T^{2} \) |
| 97 | \( 1 - 1.23T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.462329965299774611271502886690, −7.85590833027139108406368647965, −6.74330766647306155008827882897, −6.01325791519009148259943550274, −5.26759337094274571678183980657, −4.60955131404541817651208493473, −3.62180031756547285161739556483, −2.62365416947959850465568052628, −1.98779803402582139691618056394, 0,
1.98779803402582139691618056394, 2.62365416947959850465568052628, 3.62180031756547285161739556483, 4.60955131404541817651208493473, 5.26759337094274571678183980657, 6.01325791519009148259943550274, 6.74330766647306155008827882897, 7.85590833027139108406368647965, 8.462329965299774611271502886690