Properties

Label 2-2667-1.1-c1-0-81
Degree $2$
Conductor $2667$
Sign $-1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.22·2-s + 3-s + 2.95·4-s − 0.700·5-s − 2.22·6-s − 7-s − 2.13·8-s + 9-s + 1.55·10-s + 2.84·11-s + 2.95·12-s − 1.64·13-s + 2.22·14-s − 0.700·15-s − 1.16·16-s + 1.41·17-s − 2.22·18-s + 3.55·19-s − 2.07·20-s − 21-s − 6.32·22-s − 9.09·23-s − 2.13·24-s − 4.50·25-s + 3.66·26-s + 27-s − 2.95·28-s + ⋯
L(s)  = 1  − 1.57·2-s + 0.577·3-s + 1.47·4-s − 0.313·5-s − 0.908·6-s − 0.377·7-s − 0.753·8-s + 0.333·9-s + 0.493·10-s + 0.856·11-s + 0.853·12-s − 0.456·13-s + 0.595·14-s − 0.180·15-s − 0.291·16-s + 0.344·17-s − 0.524·18-s + 0.814·19-s − 0.463·20-s − 0.218·21-s − 1.34·22-s − 1.89·23-s − 0.435·24-s − 0.901·25-s + 0.719·26-s + 0.192·27-s − 0.558·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $-1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 + T \)
127 \( 1 - T \)
good2 \( 1 + 2.22T + 2T^{2} \)
5 \( 1 + 0.700T + 5T^{2} \)
11 \( 1 - 2.84T + 11T^{2} \)
13 \( 1 + 1.64T + 13T^{2} \)
17 \( 1 - 1.41T + 17T^{2} \)
19 \( 1 - 3.55T + 19T^{2} \)
23 \( 1 + 9.09T + 23T^{2} \)
29 \( 1 - 5.14T + 29T^{2} \)
31 \( 1 + 5.38T + 31T^{2} \)
37 \( 1 + 8.77T + 37T^{2} \)
41 \( 1 - 7.79T + 41T^{2} \)
43 \( 1 + 2.96T + 43T^{2} \)
47 \( 1 + 10.2T + 47T^{2} \)
53 \( 1 - 1.24T + 53T^{2} \)
59 \( 1 - 12.0T + 59T^{2} \)
61 \( 1 + 3.35T + 61T^{2} \)
67 \( 1 - 7.32T + 67T^{2} \)
71 \( 1 + 0.417T + 71T^{2} \)
73 \( 1 + 7.52T + 73T^{2} \)
79 \( 1 - 9.40T + 79T^{2} \)
83 \( 1 + 0.994T + 83T^{2} \)
89 \( 1 + 11.2T + 89T^{2} \)
97 \( 1 + 12.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.390754458991890774954688106620, −8.009455453119513932905864018349, −7.20417913710268962121242441175, −6.63279732310566741665980020481, −5.57706810824694202319422167009, −4.24364813796058789169297505869, −3.44909568710305543275899847602, −2.28126890579600344315306951189, −1.37902683278073173456070323217, 0, 1.37902683278073173456070323217, 2.28126890579600344315306951189, 3.44909568710305543275899847602, 4.24364813796058789169297505869, 5.57706810824694202319422167009, 6.63279732310566741665980020481, 7.20417913710268962121242441175, 8.009455453119513932905864018349, 8.390754458991890774954688106620

Graph of the $Z$-function along the critical line