L(s) = 1 | + (0.719 − 1.24i)5-s + (−0.5 + 0.866i)7-s + 0.950·11-s + (−0.219 + 0.380i)13-s + (−3.19 − 5.53i)17-s + (−1.91 + 3.31i)19-s − 8.21·23-s + (1.46 + 2.53i)25-s − 6.48·29-s − 3.38·31-s + (0.719 + 1.24i)35-s + (−6.07 + 0.337i)37-s + (3.86 − 6.69i)41-s + 2.43·43-s + 4.48·47-s + ⋯ |
L(s) = 1 | + (0.321 − 0.557i)5-s + (−0.188 + 0.327i)7-s + 0.286·11-s + (−0.0609 + 0.105i)13-s + (−0.774 − 1.34i)17-s + (−0.439 + 0.760i)19-s − 1.71·23-s + (0.292 + 0.507i)25-s − 1.20·29-s − 0.608·31-s + (0.121 + 0.210i)35-s + (−0.998 + 0.0554i)37-s + (0.603 − 1.04i)41-s + 0.371·43-s + 0.654·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0914i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1104986835\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1104986835\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (6.07 - 0.337i)T \) |
good | 5 | \( 1 + (-0.719 + 1.24i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 - 0.950T + 11T^{2} \) |
| 13 | \( 1 + (0.219 - 0.380i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.19 + 5.53i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.91 - 3.31i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 8.21T + 23T^{2} \) |
| 29 | \( 1 + 6.48T + 29T^{2} \) |
| 31 | \( 1 + 3.38T + 31T^{2} \) |
| 41 | \( 1 + (-3.86 + 6.69i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 2.43T + 43T^{2} \) |
| 47 | \( 1 - 4.48T + 47T^{2} \) |
| 53 | \( 1 + (1.63 + 2.83i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.964 - 1.67i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.0497 - 0.0861i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.46 - 4.26i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.87 - 13.6i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 5.29T + 73T^{2} \) |
| 79 | \( 1 + (-6.80 + 11.7i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6.26 + 10.8i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (5.82 + 10.0i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 7.80T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.752439916099930274724478864408, −7.62024986087362540907845021619, −7.03311285151343340906795367895, −5.94018775021437557394343799655, −5.51228972518803165810545768026, −4.46635419629260376547191890871, −3.71988134943253931354863173432, −2.47620685894302330138388286844, −1.61632299791508643472062648684, −0.03287787385786286010583653168,
1.71607485969665544763254247241, 2.55690178525622219475869570425, 3.77264465999852769170473056556, 4.29347470665850535745089104550, 5.53907606059000140905041424047, 6.28740024789598525567160648070, 6.81692945134674261713464439312, 7.71963578263929128748941335011, 8.489717844640176188649458644515, 9.258624087713703480830151483822