L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−1.22 − 0.707i)5-s + (−0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (−0.999 − i)10-s − 1.41·11-s + (−0.866 − 0.5i)13-s + (−0.707 − 0.707i)14-s + (0.500 + 0.866i)16-s + (−0.707 − 1.22i)17-s + (−1 + 1.73i)19-s + (−0.707 − 1.22i)20-s + (−1.36 − 0.366i)22-s + (0.499 + 0.866i)25-s + (−0.707 − 0.707i)26-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−1.22 − 0.707i)5-s + (−0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (−0.999 − i)10-s − 1.41·11-s + (−0.866 − 0.5i)13-s + (−0.707 − 0.707i)14-s + (0.500 + 0.866i)16-s + (−0.707 − 1.22i)17-s + (−1 + 1.73i)19-s + (−0.707 − 1.22i)20-s + (−1.36 − 0.366i)22-s + (0.499 + 0.866i)25-s + (−0.707 − 0.707i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.803 + 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.803 + 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4450940525\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4450940525\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 - iT \) |
good | 5 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + 1.41T + T^{2} \) |
| 13 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 31 | \( 1 + iT - T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.227103412812027117226131257312, −7.898558966780894714659682041736, −7.31967269346247233106378999626, −6.35673105191577990803343878014, −5.51875786878346871676934854478, −4.61586783497357375636347433454, −4.15118009613352365066664194427, −3.17844772041824238072535592110, −2.34106457220617745367415744036, −0.18336946451761635407621336109,
2.28770609842018944973323650425, 2.84293886470824197643113943516, 3.69651225982350382920569869941, 4.56507130970369862011171768971, 5.27006429574933428098188512629, 6.40401449578399489786428654172, 6.90513711617597845566858625886, 7.53299409268630502713080331222, 8.509992538869177739434304499983, 9.382091246490914476550493193199