L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (−0.0338 − 0.0585i)5-s + 0.999i·8-s − 0.0676i·10-s + (−3.40 − 1.96i)11-s + (−3.32 + 1.92i)13-s + (−0.5 + 0.866i)16-s − 1.55·17-s − 5.84i·19-s + (0.0338 − 0.0585i)20-s + (−1.96 − 3.40i)22-s + (4.78 − 2.76i)23-s + (2.49 − 4.32i)25-s − 3.84·26-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.0151 − 0.0261i)5-s + 0.353i·8-s − 0.0213i·10-s + (−1.02 − 0.592i)11-s + (−0.922 + 0.532i)13-s + (−0.125 + 0.216i)16-s − 0.376·17-s − 1.34i·19-s + (0.00755 − 0.0130i)20-s + (−0.418 − 0.725i)22-s + (0.998 − 0.576i)23-s + (0.499 − 0.865i)25-s − 0.753·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.361 + 0.932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.361 + 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.567233627\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.567233627\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.0338 + 0.0585i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3.40 + 1.96i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (3.32 - 1.92i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 1.55T + 17T^{2} \) |
| 19 | \( 1 + 5.84iT - 19T^{2} \) |
| 23 | \( 1 + (-4.78 + 2.76i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.20 + 0.697i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.09 - 0.632i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 8.71T + 37T^{2} \) |
| 41 | \( 1 + (5.17 + 8.96i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.735 + 1.27i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.77 + 3.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 7.26iT - 53T^{2} \) |
| 59 | \( 1 + (4.70 + 8.14i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.0705 + 0.0407i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.67 - 13.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.30iT - 71T^{2} \) |
| 73 | \( 1 - 7.07iT - 73T^{2} \) |
| 79 | \( 1 + (-3.42 + 5.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.93 + 6.81i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 11.6T + 89T^{2} \) |
| 97 | \( 1 + (-0.363 - 0.209i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.638710072002559370529334408933, −7.86619546769593215030903483495, −6.99380275500884133478444721667, −6.56217573726842802045976490429, −5.38239519679125038355722893680, −4.92705903529769083727535614707, −4.08669125344331550673458055583, −2.86604596693391429938748806975, −2.32865649046082447527791471147, −0.40101147780726385027765374811,
1.36633101954578201314450125180, 2.53174174395993565499253326019, 3.20465055281241146798540729827, 4.32877980724368327174719789104, 5.08560596835853244890512616536, 5.66140651207471031529331166359, 6.66584246638542392450129246216, 7.56776151504510394176827156692, 7.972963980226084504703143575180, 9.262417342162104103412353859322